

INFORMATION SECURITY

PRACTICAL COMBINATORIAL TESTING

D. Richard Kuhn, Raghu N. Kacker, Yu Lei

NIST Special Publication 800-142

 October, 2010

U.S. Department of Commerce
Gary Locke, Secretary

National Institute of Standards and Technology
Patrick Gallagher, Director

Practical Combinatorial Testing
__

 ii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests,
test methods, reference data, proof of concept implementations, and technical analyses to
advance the development and productive use of information technology. ITL’s
responsibilities include the development of technical, physical, administrative, and
management standards and guidelines for the cost-effective security and privacy of
sensitive unclassified information in Federal computer systems. This Special Publication
800-series reports on ITL’s research, guidance, and outreach efforts in computer security,
and its collaborative activities with industry, government, and academic organizations.

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 2010

For sale by the Superintendent of Documents, U.S. Government Printing Office
Internet: bookstore.gpo.gov — Phone: (202) 512-1800 — Fax: (202) 512-2250
Mail: Stop SSOP, Washington, DC 20402-0001Note to Readers

Practical Combinatorial Testing

 iii

Note to Readers

This document is a publication of the National Institute of Standards and Technology
(NIST) and is not subject to U.S. copyright. Certain commercial entities, equipment, or
materials may be identified in this document in order to describe an experimental procedure
or concept adequately. Such identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the entities, materials, or equipment are necessarily the best available for the
purpose.

For questions or comments on this document, contact Rick Kuhn, kuhn@nist.gov or 301-
975-3337.

Acknowledgements

Special thanks are due to Tim Grance, Jim Higdon, Eduardo Miranda, and Tom Wissink
for early support and evangelism of this work, and especially Jim Lawrence who has been
an integral part of the team since the beginning. We have benefitted tremendously from
interactions with researchers and practitioners including Renee Bryce, Myra Cohen,
Charles Colbourn, Mike Ellims, Vincent Hu, Justin Hunter, Aditya Mathur, Josh
Maximoff, Carmelo Montanez-Rivera, Jenise Reyes Rodriguez, Rick Rivello, Sreedevi
Sampath, Mike Trela, and Tao Xie. We also gratefully acknowledge NIST SURF students
Michael Forbes, William Goh, Evan Hartig, Menal Modha, Kimberley O’Brien-Applegate,
Michael Reilly, Malcolm Taylor and Bryan Wilkinson who contributed to the software and
methods described in this document.

Practical Combinatorial Testing
__

 iv

Practical Combinatorial Testing

 v

Table of Contents

1 INTRODUCTION .. 2

1.1 Authority..2
1.2 Document Scope and Purpose ...2
1.3 Audience and Assumptions..3
1.4 Organization: How to use this Document...3

2 COMBINATORIAL METHODS IN TESTING.. 4

2.1 Two Forms of Combinatorial Testing..6
2.2 The Test Oracle Problem ...9
2.3 Chapter Summary ..10

3 CONFIGURATION TESTING .. 11
3.1 Simple Application Platform Example ..11
3.2 Smart Phone Application Example..13
3.3 Cost and Practical Considerations ...15
3.4 Chapter Summary ..16

4 INPUT PARAMETER TESTING .. 17
4.1 Example Access Control Module ..17
4.2 Real-world Systems ...19
4.3 Cost and Practical Considerations ...20
4.4 Chapter Summary ..21

5 SEQUENCE-COVERING ARRAYS .. 22
5.1 Constructing Sequence Covering Arrays...23
5.2 Using Sequence Covering Arrays..23
5.3 Cost and Practical Considerations ...24
5.4 Chapter Summary ..25

6 MEASURING COMBINATORIAL COVERAGE .. 27

6.1 Software Test Coverage...27
6.2 Combinatorial Coverage ..28
6.3 Cost and Practical Considerations ...32
6.4 Chapter Summary ..32

7 COMBINATORIAL AND RANDOM TESTING .. 33

7.1 Coverage of Random Tests..33
7.2 Comparing Random and Combinatorial Coverage..36
7.3 Cost and Practical Considerations ...40
7.4 Chapter Summary ..40

Practical Combinatorial Testing
__

 vi

8 ASSERTION-BASED TEST ORACLES .. 41
8.1 Basic Assertions for Testing ..41
8.2 Stronger Assertion-based Testing..44
8.3 Cost and Practical Considerations ...45
8.4 Chapter Summary ..45

9 MODEL-BASED TEST ORACLES .. 46
9.1 Overview..46
9.2 Access Control System Example...47
9.3 Cost and Practical Considerations ...54
9.4 Chapter Summary ..54

10 FAULT LOCALIZATION ... 55
10.1 Set-theoretic Analysis ..55
10.2 Cost and Practical Considerations ...59
10.3 Chapter Summary ..59

APPENDIX A – MATHEMATICS REVIEW .. 60

APPENDIX B - EMPIRICAL DATA ON SOFTWARE FAILURES 65

APPENDIX C - TOOLS FOR COMBINATORIAL TESTING 69

APPENDIX D - REFERENCES ... 70

Practical Combinatorial Testing

 1

Executive Summary

Software implementation errors are one of the most significant contributors to
information system security vulnerabilities, making software testing an essential part of
system assurance. In 2003 NIST published a widely cited report which estimated that
inadequate software testing costs the US economy $59.5 billion per year, even though 50%
to 80% of development budgets go toward testing. Exhaustive testing – testing all possible
combinations of inputs and execution paths – is impossible for real-world software, so high
assurance software is tested using methods that require extensive staff time and thus have
enormous cost. For less critical software, budget constraints often limit the amount of
testing that can be accomplished, increasing the risk of residual errors that lead to system
failures and security weaknesses.

Combinatorial testing is a method that can reduce cost and increase the effectiveness of
software testing for many applications. The key insight underlying this form of testing is
that not every parameter contributes to every failure and most failures are caused by
interactions between relatively few parameters. Empirical data gathered by NIST and
others suggest that software failures are triggered by only a few variables interacting (6 or
fewer). This finding has important implications for testing because it suggests that testing
combinations of parameters can provide highly effective fault detection. Pairwise (2-way
combinations) testing is sometimes used to obtain reasonably good results at low cost, but
pairwise testing may miss 10% to 40% or more of system bugs, and is thus not sufficient
for mission-critical software. Combinatorial testing beyond 2-way has been limited,
primarily due to a lack of good algorithms for higher interaction levels such as 4-way to 6-
way testing. New algorithms, however, have made combinatorial testing beyond pairwise
practical for industrial use.

This publication provides a self-contained tutorial on using combinatorial testing for
real-world software. It introduces the key concepts and methods, explains use of software
tools for generating combinatorial tests (freely available on the NIST web site
csrc.nist.gov/acts), and discusses advanced topics such as the use of formal models of
software to determine the expected results for each set of test inputs. With each topic, a
section on costs and practical considerations explains tradeoffs and limitations that may
impact resources or funding. The material is accessible to an undergraduate student of
computer science or engineering, and includes an extensive set of references to papers that
provide more depth on each topic.

Practical Combinatorial Testing
__

 2

1 INTRODUCTION

Software implementation errors are one of the most significant contributors to

information system security vulnerabilities, making software testing an essential part of
system assurance. Combinatorial methods can help reduce the cost and increase the
effectiveness of software testing for many applications. This publication provides a self-
contained tutorial on using combinatorial testing for real-world software. It introduces the
key concepts and methods, explains use of software tools for generating combinatorial tests
(freely available on the NIST web site csrc.nist.gov/acts), and discusses advanced topics
such as the use of formal models of software to determine the expected results for each
possible set of test inputs. The material is accessible to an undergraduate student of
computer science or engineering, and includes an extensive set of references to papers that
provide more depth on each topic.

1.1 Authority

The National Institute of Standards and Technology (NIST) developed this document

in furtherance of its statutory responsibilities under the Federal Information Security
Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum

requirements, for providing adequate information security for all agency operations and
assets, but such standards and guidelines shall not apply to national security systems. This
guideline is consistent with the requirements of the Office of Management and Budget
(OMB) Circular A-130, Section 8b(3), “Securing Agency Information Systems,” as
analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental information is
provided in A-130, Appendix III.

This guideline has been prepared for use by Federal agencies. It may be used by

nongovernmental organizations on a voluntary basis and is not subject to copyright, though
attribution is desired.

Nothing in this document should be taken to contradict standards and guidelines made

mandatory and binding on Federal agencies by the Secretary of Commerce under statutory
authority, nor should these guidelines be interpreted as altering or superseding the existing
authorities of the Secretary of Commerce, Director of the OMB, or any other Federal
official.

1.2 Document Scope and Purpose

This publication introduces combinatorial testing and explains how to use it effectively

for system and software assurance.

Practical Combinatorial Testing

 3

1.3 Audience and Assumptions

This document assumes that the readers have experience with software development

and testing, some familiarity with scripting languages, and basic knowledge of
programming, logic, and discrete mathematics equivalent to what would be acquired in an
undergraduate computer science or engineering program. Most of the material should be
readily understood by an undergraduate student with some programming experience.
Because of the constantly changing nature of the information technology industry, readers
are strongly encouraged to take advantage of other resources (including those listed in this
document) for more current and detailed information.

1.4 Organization: How to use this Document

The document is divided into chapters, with background material covered in

appendices. Because it is intended to be self-contained, each chapter provides material that
will be used in later topics. Chapters 2, 3, and 4 will be needed by most testers, while the
material in later chapters is specialized for various topics. Appendices include a review of
basic combinatorics and a discussion of empirical data on software failures.

Readers new to combinatorial testing may want to review the basics of combinatorics

in Appendix A and read chapters 2, 3, and 4. Other sections of the publication can be
reserved for later use as needed.

Practical Combinatorial Testing
__

 4

2 COMBINATORIAL METHODS IN TESTING

Developers of large data-intensive software often notice an interesting—though not

surprising—phenomenon: When usage of an application jumps dramatically, components
that have operated for months without trouble suddenly develop previously undetected
errors. For example, the application may have been installed on a different OS-hardware-
DBMS-networking platform, or newly added customers may have account records with an
oddball combination of values that have not occurred before. Some of these rare
combinations trigger failures that have escaped previous testing and extensive use. Such
failures are known as interaction failures, because they are only exposed when two or more
input values interact to cause the program to reach an incorrect result.

Combinatorial testing can help detect problems like this early in the testing life cycle.

The key insight underlying t-way combinatorial testing is that not every parameter
contributes to every failure and most failures are triggered by a single parameter value or
interactions between a relatively small number of parameters (for more on the number of
parameters interacting in failures, see Appendix B). To detect interaction failures, software
developers often use “pairwise testing”, in which all possible pairs of parameter values are
covered by at least one test. Its effectiveness is based on the observation that software
failures often involve interactions between parameters. For example, a router may be
observed to fail only for a particular protocol when packet volume exceeds a certain rate, a
2-way interaction between protocol type and packet rate. Figure 1 illustrates how such a 2-
way interaction may happen in code. Note that the failure will only be triggered when both
pressure < 10 and volume > 300 are true.

Figure 1. 2-way interaction failure triggered only when two conditions are
true.

Pairwise testing can be highly effective and good tools are available to generate arrays

with all pairs of parameter value combinations. But until recently only a handful of tools
could generate combinations beyond 2-way, and most that did could require impractically
long times to generate 3-way, 4-way, or 5-way arrays because the generation process is
mathematically complex. Pairwise testing, i.e. 2-way combinations, has come to be

if (pressure < 10) {
 // do something
 if (volume > 300) {

faulty code! BOOM!
}

 else {
good code, no problem

}
}
else {
 // do something else
}

Practical Combinatorial Testing

 5

Failures appear
to be caused by
interactions of
only a few
variables, so tests
that cover all
such few-variable
interactions can
be very effective.

accepted as the common approach to combinatorial testing because it is computationally
tractable and reasonably effective.

But what if some failure is triggered only by a very

unusual combination of 3, 4, or more sensor values? It is very
unlikely that pairwise tests would detect this unusual case; we
would need to test 3-way and 4-way combinations of values.
But is testing all 4-way combinations enough to detect all
errors? What degree of interaction occurs in real failures in
real systems? Surprisingly, this question had not been studied
when NIST began investigating interaction failures in 1999.
Results showed that across a variety of domains, all failures
could be triggered by a maximum of 4-way to 6-way
interactions [34, 35, 36, 65]. As shown in Figure 2, the
detection rate increased rapidly with interaction strength (the
interaction level t in t-way combinations is often referred to as strength). With the NASA
application, for example, 67% of the failures were triggered by only a single parameter
value, 93% by 2-way combinations, and 98% by 3-way combinations. The detection rate
curves for the other applications studied are similar, reaching 100% detection with 4 to 6-
way interactions. Studies by other researchers [6, 7, 26] have been consistent with these
results.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

I nteract ions

C
u

m
u

la
ti

v
e

 %

Med. Devices

Browser

Server

NASA Distributed
DB

Figure 2. Error detection rates for interaction strengths 1 to 6

While not conclusive, these results are interesting because they suggest that, while
pairwise testing is not sufficient, the degree of interaction involved in failures is relatively
low. Testing all 4-way to 6-way combinations may therefore provide reasonably high
assurance. As with most issues in software, however, the situation is not that simple.
Efficient generation of test suites to cover all t-way combinations is a difficult
mathematical problem that has been studied for nearly a century. In addition, most
parameters are continuous variables which have possible values in a very large range (+/-

Practical Combinatorial Testing
__

 6

Combinatorial
testing can be
applied to
configurations,
input data, or both.

232 or more). These values must be discretized to a few distinct values. Most glaring of all
is the problem of determining the correct result that should be expected from the system
under test for each set of test inputs. Generating 1,000 test data inputs is of little help if we
cannot determine what the system under test (SUT) should produce as output for each of
the 1,000 tests.

With the exception of combination covering test

generation, these challenges are common to all types of
software testing, and a variety of good techniques have been
developed for dealing with them. What has made combinatorial
testing practical today is the development of efficient algorithms
to generate tests covering t-way combinations, and effective
methods of integrating the tests produced into the testing
process. A variety of approaches introduced in this publication
can be used to make combinatorial testing a practical and
effective addition to the software tester’s toolbox.

A note on terminology: we use the definitions below, following the Institute of

Electrical and Electronics Engineers [30]. The term “bug” may also be used where its
meaning is clear.
• error: a mistake made by a developer. This could be a coding error or a

misunderstanding of requirements or specification.
• fault: a difference between an incorrect program and one that correctly implements a

specification. An error may result in one or more faults.
• failure: a result that differs from the correct result as specified. A fault in code may

result in zero or more failures, depending on inputs and execution path.

2.1 Two Forms of Combinatorial Testing

There are basically two approaches to combinatorial testing – use combinations of

configuration parameter values, or combinations of input parameter values. In the first
case, we select combinations of values of configurable parameters. For example, a server
might be tested by setting up all 4-way combinations of configuration parameters such as
number of simultaneous connections allowed, memory, OS, database size, etc., with the
same test suite run against each configuration. The tests may have been constructed using
any methodology, not necessarily combinatorial coverage. The combinatorial aspect of this
approach is in achieving combinatorial coverage of configuration parameter values. (Note,
the term variable is often used interchangeably with parameter to refer to inputs to a
function.)

In the second approach, we select combinations of input

data values, which then become part of complete test cases,
creating a test suite for the application. In this case
combinatorial coverage of input data values is required for
tests constructed. A typical ad hoc approach to testing
involves subject matter experts setting up use scenarios, then

Advances in
algorithms have
made
combinatorial
testing beyond
pairwise finally
practical.

Practical Combinatorial Testing

 7

selecting input values to exercise the application in each scenario, possibly supplementing
these tests with unusual or suspected problem cases. In the combinatorial approach to input
data selection, a test data generation tool is used to cover all combinations of input values
up to some specified limit. One such tool is ACTS (described in Appendix C), which is
available freely from NIST.

2.1.1 Configuration Testing

Many, if not most, software systems have a large number of configuration parameters.

Many of the earliest applications of combinatorial testing were in testing all pairs of system
configurations. For example, telecommunications software may be configured to work
with different types of call (local, long distance, international), billing (caller, phone card,
800), access (ISDN, VOIP, PBX), and server for billing (Windows Server, Linux/MySQL,
Oracle). The software must work correctly with all combinations of these, so a single test
suite could be applied to all pairwise combinations of these four major configuration items.
Any system with a variety of configuration options is a suitable candidate for this type of
testing.

Configuration coverage is perhaps the most developed form of combinatorial testing.

It has been used for years with pairwise coverage, particularly for applications that must be
shown to work across a variety of combinations of operating systems, databases, and
network characteristics.

For example, suppose we had an application that is intended to run on a variety of

platforms comprised of five components: an operating system (Windows XP, Apple OS X,
Red Hat Enterprise Linux), a browser (Internet Explorer, Firefox), protocol stack (IPv4,
IPv6), a processor (Intel, AMD), and a database (MySQL, Sybase, Oracle), a total of

32223 ⋅⋅⋅⋅ = 72 possible platforms. With only 10 tests, shown in Table 1, it is possible to
test every component interacting with every other component at least once, i.e., all possible
pairs of platform components are covered.

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL

2 XP Firefox IPv6 AMD Sybase

3 XP IE IPv6 Intel Oracle

4 OS X Firefox IPv4 AMD MySQL

5 OS X IE IPv4 Intel Sybase

6 OS X Firefox IPv4 Intel Oracle

7 RHEL IE IPv6 AMD MySQL

8 RHEL Firefox IPv4 Intel Sybase

9 RHEL Firefox IPv4 AMD Oracle

10 OS X Firefox IPv6 AMD Oracle

Table 1. Pairwise test configurations

Practical Combinatorial Testing
__

 8

The key component
is a covering array,
which includes all t-
way combinations.
Each column is a
parameter. Each
row is a test.

2.1.2 Input Parameter Testing

Even if an application has no configuration options, some form of input will be

processed. For example, a word processing application may allow the user to select 10
ways to modify some highlighted text: subscript, superscript, underline, bold, italic,
strikethrough, emboss, shadow, small caps, or all caps. The font-processing function
within the application that receives these settings as input must process the input and
modify the text on the screen correctly. Most options can be combined, such as bold and
small caps, but some are incompatible, such as subscript and superscript.

Thorough testing requires that the font-processing function work correctly for all

valid combinations of these input settings. But with 10 binary inputs, there are 210 = 1,024
possible combinations. But the empirical analysis reported above shows that failures
appear to involve a small number of parameters, and that testing all 3-way combinations
may detect 90% or more of bugs. For a word processing application, testing that detects
better than 90% of bugs may be a cost-effective choice, but we need to ensure that all 3-
way combinations of values are tested. To do this, we create a test suite to cover all 3-way
combinations (known as a covering array) [12, 14, 23, 26, 30, 43, 63].

An example is given in Figure 3, which shows a 3-way

covering array for 10 variables with two values each. The
interesting property of this array is that any three columns
contain all eight possible values for three binary variables.
For example, taking columns F, G, and H, we can see that all
eight possible 3-way combinations (000, 001, 010, 011, 100,
101, 110, 111) occur somewhere in the three columns
together. In fact, any combination of three columns chosen in
any order will also contain all eight possible values.
Collectively, therefore, this set of tests will exercise all 3-way combinations of input values
in only 13 tests, as compared with 1,024 for exhaustive coverage.

Figure 3. 3-way covering array

Tests

A B C D E F G H I J

Practical Combinatorial Testing

 9

Similar arrays can be generated to cover up to all 6-way combinations. In general, the
number of t-way combinatorial tests that will be required is proportional to vt log n, for n
parameters with v possible values each.

Figure 4 contrasts these two approaches. With the first approach, we may run the

same test set against all 3-way combinations of configuration options, while for the second
approach, we would construct a test suite that covers all 3-way combinations of input
transaction fields. Of course these approaches could be combined, with the combinatorial
tests (approach 2) run against all the configuration combinations (approach 1).

Figure 4. Two ways of using combinatorial testing

2.2 The Test Oracle Problem

 Even with efficient algorithms to produce covering arrays, the oracle problem
remains – testing requires both test data and results that should be expected for each data
input. High interaction strength combinatorial testing may require a large number of tests
in some cases, although not always. Approaches to solving the oracle problem for
combinatorial testing include:

 Crash testing: the easiest and least expensive approach is to simply run tests
against the system under test (SUT) to check whether any unusual combination of input
values causes a crash or other easily detectable failure. This is essentially the same
procedure used in “fuzz testing”, which sends random values against the SUT. This form
of combinatorial testing could be regarded as a disciplined form of fuzz testing [59]. It
should be noted that although pure random testing will generally cover a high percentage of
t-way combinations, 100% coverage of combinations requires a random test set much
larger than a covering array. For example, all 3-way combinations of 10 parameters with 4
values each can be covered with 151 tests. Purely random generation requires over 900
tests to provide full 3-way coverage.

System
Under Test

Inputs:
Product
Amount
Quantity
Pmt method
Shipping method

Configuration:
Browser
OS
DBMS
Server
... Use combinations of input

values in generating tests

Use combinations of configuration
values with existing test suite

Practical Combinatorial Testing
__

 10

Several types of
test oracle can be
used, depending on
resources and the
system under test.

Embedded assertions: An increasingly popular “light-weight formal methods”
technique is to embed assertions within code to ensure proper relationships between data,
for example as preconditions, postconditions, or input value checks. Tools such as the Java
Modeling language (JML) can be used to introduce very complex assertions, effectively
embedding a formal specification within the code. The embedded assertions serve as an
executable form of the specification, thus providing an oracle for the testing phase. With
embedded assertions, exercising the application with all t-way combinations can provide
reasonable assurance that the code works correctly across a very wide range of inputs.
This approach has been used successfully for testing smart cards, with embedded JML
assertions acting as an oracle for combinatorial tests [25]. Results showed that 80% - 90%
of errors could be found in this way.

Model based test generation uses a mathematical model
of the SUT and a simulator or model checker to generate
expected results for each input [1,8,9,52,55]. If a simulator can
be used, expected results can be generated directly from the
simulation, but model checkers are widely available and can
also be used to prove properties such as liveness in parallel
processes, in addition to generating tests. Conceptually, a
model checker can be viewed as exploring all states of a system model to determine if a
property claimed in a specification statement is true. What makes a model checker
particularly valuable is that if the claim is false, the model checker not only reports this, but
also provides a “counterexample” showing how the claim can be shown false. If the claim
is false, the model checker indicates this and provides a trace of parameter input values and
states that will prove it is false. In effect this is a complete test case, i.e., a set of parameter
values and expected result. It is then simple to map these values into complete test cases in
the syntax needed for the system under test. Later chapters develop detailed procedures for
applying each of these testing approaches.

2.3 Chapter Summary

1. Empirical data suggest that software failures are caused by the interaction of relatively
few parameter values, and that the proportion of failures attributable to t-way interactions
declines very rapidly with increase in t. That is, usually single parameter values or a pair of
values are the cause of a failure, but increasingly smaller proportions are caused by 3-way,
4-way, and higher order interactions.
2. Because a small number of parameters are involved in failures, we can attain a high
degree of assurance by testing all t-way interactions, for an appropriate interaction strength
t (2 to 6 usually). The number of t-way tests that will be required is proportional to vt log n,
for n parameters with v values each.
3. Combinatorial methods can be applied to configurations or to input parameters, or in
some cases both.
4. As with all other types of testing, the oracle problem must be solved – i.e., for every
test input, the expected output must be determined in order to check if the application is
producing the correct result for each set of inputs. A variety of methods are available to
solve the oracle problem.

Practical Combinatorial Testing

 11

3 CONFIGURATION TESTING

This chapter presents worked examples illustrating development of test configurations. As
will be seen, the advantages of combinatorial testing increase with the size of the problem.

3.1 Simple Application Platform Example

Returning to the simple example introduced in Chapter 2, we illustrate development
of test configurations, and compare the size of test suites for various interaction strengths
versus testing all possible configurations. For the five configuration parameters, we have

32223 ⋅⋅⋅⋅ = 72 configurations. The convention for describing the variables and values in
combinatorial testing is v1

n1v2
n2 ... where the vi are number of variable values and ni are

number of occurrences. Thus this configuration is designated 2332. Note that at t = 5, the
number of tests is the same as exhaustive testing for this example, because there are only
five parameters. The savings as a percentage of exhaustive testing are good, but not that
impressive for this small example. With larger systems the savings can be enormous, as
will be seen in the next section.

Parameter Values
Operating system XP, OS X, RHL
Browser IE, Firefox
Protocol IPv4, IPv6
CPU Intel, AMD
DBMS MySQL, Sybase, Oracle

Table 2. Simple example configuration options.
We can now generate test configurations using the ACTS tool. For simplicity of
presentation we illustrate usage of the command line version of ACTS, but an intuitive GUI
version is available that may be more convenient. This tool is summarized in Appendix C
and a comprehensive user manual is included with the ACTS download.

 The first step in creating test configurations is to specify the parameters and
possible values in a file for input to ACTS, as shown in Figure 5:

Figure 5. Simple example input file for ACTS.

[System]

[Parameter]
OS (enum): XP,OS_X,RHL
Browser (enum): IE, Firefox
Protocol(enum): IPv4,IPv6
CPU (enum): Intel,AMD
DBMS (enum): MySQL,Sybase,Oracle

[Relation]
[Constraint]
[Misc]

Practical Combinatorial Testing
__

 12

Note that most of the bracketed tags in the input file are optional, and not filled in
for this example. The essential part of the file is the [Parameter] specification, in the
format <parameter name> (<type>): <values>, where one or more values are listed
separated by commas. The tool can then be run at the command line:

java -Ddoi=2 –jar acts_cmd.jar ActsConsoleManager i n.txt out.txt

A variety of options can be specified, but for this example we only use the “degree of
interaction” option to specify 2-way, 3-way, etc. coverage. Output can be created in a
convenient form shown below, or as a matrix of numbers, comma separated value, or Excel
spreadsheet form. If the output will be used by human testers rather than as input for
further machine processing, the format in Figure 6 is useful:

Figure 6. Excerpt of test configuration output covering all 2-way
combinations.

Degree of interaction coverage: 2
Number of parameters: 5
Maximum number of values per parameter: 3
Number of configurations: 10

Configuration #1:

1 = OS=XP
2 = Browser=IE
3 = Protocol=IPv4
4 = CPU=Intel
5 = DBMS=MySQL

Configuration #2:

1 = OS=XP
2 = Browser=Firefox
3 = Protocol=IPv6
4 = CPU=AMD
5 = DBMS=Sybase

Configuration #3:

1 = OS=XP
2 = Browser=IE
3 = Protocol=IPv6
4 = CPU=Intel
5 = DBMS=Oracle

Configuration #4:

1 = OS=OS_X
2 = Browser=Firefox
3 = Protocol=IPv4
4 = CPU=AMD
5 = DBMS=MySQL
. . .

Practical Combinatorial Testing

 13

The complete test set for 2-way combinations is shown in Table 1 in Section 2.1.1. Only
10 tests are needed. Moving to 3-way or higher interaction strengths requires more tests, as
shown in Table 3.

t # Tests % of Exhaustive
2 10 14
3 18 25
4 36 50
5 72 100

Table 3. Number of combinatorial tests for a simple example.

 In this example, substantial savings could be realized by testing t-way
configurations instead of all possible configurations, although for some applications (such
as a small but highly critical module) a full exhaustive test may be warranted. As we will
see in the next example, in many cases it is impossible to test all configurations, so we need
to develop reasonable alternatives.

3.2 Smart Phone Application Example

 Smart phones have become enormously popular because they combine
communication capability with powerful graphical displays and processing capability.
Literally tens of thousands of smart phone applications, or ‘apps’, are developed annually.
Among the platforms for smart phone apps is the Android, which includes an open source
development environment and specialized operating system. Android units contain a large
number of configuration options that control the behavior of the device. Android apps
must operate across a variety of hardware and software platforms, since not all products
support the same options. For example, some smart phones may have a physical keyboard
and others may present a soft keyboard using the touch sensitive screen. Keyboards may
also be either only numeric with a few special keys, or a full typewriter keyboard.
Depending on the state of the app and user choices, the keyboard may be visible or hidden.
Ensuring that a particular app works across the enormous number of options is a significant
challenge for developers. The extensive set of options makes it intractable to test all
possible configurations, so combinatorial testing is a practical alternative.

Figure 7 shows a resource configuration file for Android apps. A total of 35
options may be set. Our task is to develop a set of test configurations that allow testing
across all 4-way combinations of these options. The first step is to determine the set of
parameters and possible values for each that will be tested. Although the options are listed
individually to allow a specific integer value to be associated with each, they clearly
represent sets of option values with mutually exclusive choices. For example, “Keyboard
Hidden” may be “yes”, “no”, or “undefined”. These values will be the possible settings for
parameter names that we will use in generating a covering array. Table 4 shows the
parameter names and number of possible values that we will use for input to the covering
array generator. For a complete specification of these parameters, see:
 http://developer.android.com/reference/android/content/res/Configuration.html

Practical Combinatorial Testing
__

 14

int HARDKEYBOARDHIDDEN_NO;
int HARDKEYBOARDHIDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;
int KEYBOARDHIDDEN_NO;
int KEYBOARDHIDDEN_UNDEFINED;
int KEYBOARDHIDDEN_YES;
int KEYBOARD_12KEY;
int KEYBOARD_NOKEYS;
int KEYBOARD_QWERTY;
int KEYBOARD_UNDEFINED;
int NAVIGATIONHIDDEN_NO;
int NAVIGATIONHIDDEN_UNDEFINED;
int NAVIGATIONHIDDEN_YES;
int NAVIGATION_DPAD;
int NAVIGATION_NONAV;
int NAVIGATION_TRACKBALL;
int NAVIGATION_UNDEFINED;
int NAVIGATION_WHEEL;
int ORIENTATION_LANDSCAPE;
int ORIENTATION_PORTRAIT;
int ORIENTATION_SQUARE;
int ORIENTATION_UNDEFINED;
int SCREENLAYOUT_LONG_MASK;
int SCREENLAYOUT_LONG_NO;
int SCREENLAYOUT_LONG_UNDEFINED;
int SCREENLAYOUT_LONG_YES;
int SCREENLAYOUT_SIZE_LARGE;
int SCREENLAYOUT_SIZE_MASK;
int SCREENLAYOUT_SIZE_NORMAL;
int SCREENLAYOUT_SIZE_SMALL;
int SCREENLAYOUT_SIZE_UNDEFINED;
int TOUCHSCREEN_FINGER;
int TOUCHSCREEN_NOTOUCH;
int TOUCHSCREEN_STYLUS;
int TOUCHSCREEN_UNDEFINED;

Figure 7. Android resource configuration file.

Parameter Name Values # Values
HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4
NAVIGATIONHIDDEN NO, UNDEFINED, YES 3
NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, WHEEL 5
ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4
SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4
SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5
TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Table 4. Android configuration options.

Practical Combinatorial Testing

 15

Some combinations
never occur in
practice.

Using Table 4, we can now calculate the total number of configurations:

454453433 ⋅⋅⋅⋅⋅⋅⋅⋅ = 172,800 configurations (i.e., a 243 543 system). Like many
applications, thorough testing will require some human intervention to run tests and verify results,
and a test suite will typically include many tests. If each test suite can be run in 15 minutes, it will
take roughly 24 staff-years to complete testing for an app. With salary and benefit costs for each
tester of $150,000, the cost of testing an app will be more than $3 million, making it virtually
impossible to return a profit for most apps. How can we provide effective testing for apps at a
reasonable cost?

Using the covering array generator, we can produce tests that cover t-way

combinations of values. Table 5 shows the number of tests required at several levels of t.
For many applications, 2-way or 3-way testing may be appropriate, and either of these will
require less than 1% of the time required to cover all possible test configurations.

t # Tests % of Exhaustive
2 29 0.02
3 137 0.08
4 625 0.4
5 2532 1.5
6 9168 5.3

Table 5. Number of combinatorial tests for Android example.

3.3 Cost and Practical Considerations

3.3.1 Invalid Combinations and Constraints

The system described in Section 3.1 illustrates a common situation in all types of
testing: some combinations cannot be tested because they don’t exist for the systems under
test. In this case, if the operating system is either OS X or Linux, Internet Explorer is not
available as a browser. Note that we cannot simply delete tests with these untestable
combinations, because that would result in losing other combinations that are essential to
test but are not covered by other tests. For example, deleting tests 5 and 7 in Section 2.1.1
would mean that we would also lose the test for Linux with the IPv6 protocol.

One way around this problem is to delete tests and
supplement the test suite with manually constructed test
configurations to cover the deleted combinations, but covering
array tools offer a better solution. With ACTS we can specify
constraints, which tell the tool not to include specified combinations in the generated test
configurations. ACTS supports a set of commonly used logic and arithmetic operators to
specify constraints. In this case, the following constraint can be used to ensure that invalid
combinations are not generated:

(OS != “XP” => Browser = “Firefox”)

The covering array tool will then generate a set of test configurations that does not include
the invalid combinations, but does cover all those that are essential. The revised test
configuration array is shown in Figure 8 below. Parameter values that have changed from

Practical Combinatorial Testing
__

 16

the original configurations are underlined. Note that adding the constraint also resulted in
reducing the number of test configurations by one. This will not always be the case,
depending on the constraints used, but it illustrates how constraints can help reduce the
problem. Even if particular combinations are testable, the test team may consider some
combinations unnecessary, and constraints could be used to prevent these combinations,
possibly reducing the number of test configurations.

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL

2 XP Firefox IPv6 AMD Sybase

3 XP IE IPv6 Intel Oracle

4 OS X Firefox IPv4 AMD MySQL

5 OS X Firefox IPv4 Intel Sybase

6 OS X Firefox IPv6 AMD Oracle

7 RHL Firefox IPv6 Intel MySQL

8 RHL Firefox IPv4 Intel Oracle

9 XP IE IPv4 AMD Sybase

Figure 8. Test configurations for simple example with constraint.

3.3.2 Cost Factors

Using combinatorial methods to design test configurations is probably the most widely
used combinatorial approach because it is quick and easy to do and typically delivers
significant improvements to testing. Combinatorial testing for input parameters can
provide better test coverage at lower cost than conventional tests, and can be extended to
high strength coverage to provide much better assurance.

3.4 Chapter Summary

1. Configuration testing is probably the most commonly used application of combinatorial
methods in software testing. Whenever an application has roughly five or more
configurable attributes, a covering array is likely to make testing more efficient.
Configurable attributes usually have a small number of possible values each, which is an
ideal situation for combinatorial methods. Because the number of t-way tests is
proportional to vt log n, for n parameters with v values each, unless configurable attributes
have more than 8 or 10 possible values each, the number of tests generated will probably be
reasonable. The real-world testing problem introduced in Section 3.2 is a fairly typical
size, where 4-way interactions can be tested with a few hundred tests.

2. Because many systems have certain configurations that may not be of interest (such as
Internet Explorer browser on a Linux system), constraints are an important consideration in
any type of testing. With combinatorial methods, it is important that the covering array
generator allows for the inclusion of constraints so that all relevant interactions are tested,
and important information is not lost because a test contains an impossible combination.

Practical Combinatorial Testing

 17

4 INPUT PARAMETER TESTING

As noted in the introduction, the key advantage of combinatorial testing derives
from the fact that all, or nearly all, software failures appear to involve interactions of only a
few parameters. Using combinatorial testing to select configurations can make testing
more efficient, but it can be even more effective when used to select input parameter
values. Testers traditionally develop scenarios of how an application will be used, then
select inputs that will exercise each of the application features using representative values,
normally supplemented with extreme values to test performance and reliability. The
problem with this often ad hoc approach is that unusual combinations will usually be
missed, so a system may pass all tests and work well under normal circumstances, but
eventually encounter a combination of inputs that it fails to process correctly.

By testing all t-way combinations, for some specified level of t, combinatorial

testing can help to avoid this type of situation. In this chapter we work through a small
example to illustrate the use of these methods.

4.1 Example Access Control Module

The system under test is an access control module that implements the following

policy:

Access is allowed if and only if:
• the subject is an employee

AND current time is between 9 am and 5 pm
AND it is not a weekend

• OR subject is an employee with a special authorization code
• OR subject is an auditor

AND the time is between 9 am and 5 pm
(not constrained to weekdays).

The input parameters for this module are shown in Figure 9:

Figure 9. Access control module input parameters.

Our task is to develop a covering array of tests for these inputs. The first step will

be to develop a table of parameters and possible values, similar to that in Section 3.1 in the
previous chapter. The only difference is that in this case we are dealing with input
parameters rather than configuration options. For the most part, the task is simple: we just
take the values directly from the specifications or code, as shown in Figure 10. Several

emp: boolean;
time: 0..1440; // time in minutes
day: {m,tu,w,th,f,sa,su};
auth: boolean;

 aud: boolean;

Practical Combinatorial Testing
__

 18

parameters are boolean, and we will use 0 and 1 for false and true values respectively. For
day of the week, there are only seven values, so these can all be used. However, hour of
the day presents a problem. Recall that the number of tests generated for n parameters is
proportional to vt, where v is the number of values and t is the interaction level (2-way to 6-
way). For all boolean values and 4-way testing, therefore, the number of tests will be some
multiple of 24. But consider what happens with a large number of possible values, such as
24 hours. The number of tests will be proportional to 244 = 331,736. For this example,
time is given in minutes, which would obviously be completely intractable. Therefore, we
must select representative values for the hour parameter. This problem occurs in all types
of testing, not just with combinatorial methods, and good methods have been developed to
deal with it. Most testers are already familiar with two of these: equivalence partitioning
and boundary value analysis. Additional background on these methods can be found in
software testing texts such as Ammann and Offutt [2], Beizer [4], Copeland [21], Mathur
[45], and Myers [52].

Parameter Values
emp 0,1
time ??
day m,tu,w,th,f,sa,su
auth 0, 1
aud 0, 1

Figure 10. Parameters and values for access control example.

Both of these intuitively obvious methods will produce a smaller set of values that
should be adequate for testing purposes, by dividing the possible values into partitions that
are meaningful for the program being tested. One value is selected for each partition. The
objective is to partition the input space such that any value selected from the partition will
affect the program under test in the same way as any other value in the partition. Thus,
ideally if a test case contains a parameter x which has value y, replacing y with any other
value from the partition will not affect the test case result. This ideal may not always be
achieved in practice.

How should the partitions be determined? One obvious, but not necessarily good,

approach is to simply select values from various points on the range of a variable. For
example, if capacity can range from 0 to 20,000, it might seem sensible to select 0, 10,000,
and 20,000 as possible values. But this approach is likely to miss important cases that
depend on the specific requirements of the system under test. Some judgment is involved,
but partitions are usually best determined from the specification. In this example, 9 am and
5 pm are significant, so 0540 (9 hours past midnight) and 1020 (17 hours past midnight)
determine the appropriate partitions:

0000 0540 1020 1440

Practical Combinatorial Testing

 19

The larger the
system, the greater
the benefit from
combinatorial
testing.

Use a maximum
of 8 to 10 values
per parameter to
keep testing
tractable.

Ideally, the program should behave the same for any
of the times within the partitions; it should not matter
whether the time is 4:00 am or 7:03 am, for example,
because the specification treats both of these times the same.
Similarly, it should not matter which time between the hours
of 9 am and 5 pm is chose; the program should behave the
same for 10:20 am and 2:33 pm. One common strategy,
boundary value analysis, is to select test values at each boundary and at the smallest
possible unit on either side of the boundary, for three values per boundary. The intuition,
backed by empirical research, is that errors are more likely at boundary conditions because
errors in programming may be made at these points. For example, if the requirements for
automated teller machine software say that a withdrawal should not be allowed to exceed
$300, a programming error such as the following could occur:

if (amount > 0 && amount < 300) {

//process withdrawal
} else {

// error message
}

Here, the second condition should have been “amount <= 300 ”, so a test case that
includes the value amount = 300 can detect the error, but a test with amount = 305
would not.

 It is generally also desirable to test the extremes of ranges. One possible selection

of values for the time parameter would then be: 0000, 0539, 0540, 0541, 1019, 1020, 1021,
and 1440. More values would be better, but the tester may believe that this is the most
effective set for the available time budget. With this selection, the total number of
combinations is 22782 ⋅⋅⋅⋅ = 448.

Generating covering arrays for t = 2 through 6, as detailed in Section 3.1 results in
the following number of tests:

t # Tests
2 56
3 112
4 224

Figure 11. Number of tests for access control example.

4.2 Real-world Systems

As with the previous example, the advantage over

exhaustive testing is not large, because of the small number of
parameters. With larger problems, the advantages of
combinatorial testing can be spectacular. For example,
consider the problem of testing the software that processes
switch settings for the panel shown in Figure 12. There are 34
switches, which can each be either on or off, for a total of 234

Practical Combinatorial Testing
__

 20

= 1.7 x 1010 possible settings. We clearly cannot test 17 billion possible settings, but all 3-
way interactions can be tested with only 33 tests, and all 4-way interactions with only 85.
This may seem surprising at first, but it results from the fact that every test of 34

parameters contains

3

34 = 5,984 3-way and

4

34 = 46,376 4-way combinations.

Figure 12. Panel with 34 switches.

4.3 Cost and Practical Considerations

Combinatorial methods can be highly effective and reduce the cost of testing

substantially. For example, Justin Hunter has applied these methods to a wide variety of
test problems and consistently found both lower cost and more rapid error detection [30].
But as with most aspects of engineering, tradeoffs must be considered. Among the most
important is the question of when to stop testing, balancing the cost of testing against the
risk of failing to discover additional failures. An extensive body of research has been
devoted to this topic, and sophisticated models are available for determining when the cost
of further testing will exceed the expected benefits [10, 45]. Existing models for when to
stop testing can be applied to the combinatorial test approach also, but there is an additional
consideration: What is the appropriate interaction strength to use in this type of testing?

To address these questions consider the number of tests at different interaction

strengths for an avionics software example [34] shown in Figure 13. While the number of
tests will be different (probably much smaller than in Figure 13) depending on the system
under test, the magnitude of difference between levels of t will be similar to Figure 13,
because the number of tests grows with vt, for parameters with v values. That is, the
number of tests grows with the exponent t, so we want to use the smallest interaction
strength that is appropriate for the problem. Intuitively, it seems that if no failures are
detected by t-way tests, then it may be reasonable to conduct additional testing only for t+1
interactions, but no greater if no additional failures are found at t+1. In the empirical
studies of software failures, the number of failures detected at t > 2 decreased
monotonically with t, so this heuristic seems to make sense: start testing using 2-way
(pairwise) combinations, continue increasing the interaction strength t until no errors are
detected by the t-way tests, then (optionally) try t+1 and ensure that no additional errors
are detected. As with other aspects of software development, this guideline is also
dependent on resources, time constraints, and cost-benefit considerations.

Practical Combinatorial Testing

 21

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
es

ts

Figure 13. Number of tests for avionics example.

When applying combinatorial methods to input parameters, the key cost factors are
the number of values per parameter, the interaction strength, and the number of parameters.
As shown above, the number of tests increases rapidly as the value of t is increased, but the
rate of increase depends on the number of values per parameter. Binary variables, with
only two values each, result in far fewer tests than parameters with many values each. As
a practical matter, when partitioning the input space (section 4.1), it is best to keep the
number of values per parameter below 8 or 10 if possible.

 Because the number of tests increases only logarithmically with the number of
parameters, test set size for a large problem may be only somewhat larger than for a much
smaller problem. For example, if a project uses combinatorial testing for a system that has
20 parameters and generates several hundred tests, a much larger system with 40 to 50
parameters may only require a few dozen more tests. Combinatorial methods may generate
the best cost benefit ratio for large systems.

4.4 Chapter Summary

1. The key advantage of combinatorial testing derives from the fact that all, or nearly all,

software failures appear to involve interactions of only a few parameters. Generating a
covering array of input parameter values allows us to test all of these interactions, up to
a level of 5-way or 6-way combinations, depending on resources.

2. Practical testing often requires abstracting the possible values of a variable into a small

set of equivalence classes. For example, if a variable is a 32-bit integer, it is clearly not
possible to test the full range of values in +/- 231. This problem is not unique to
combinatorial testing, but occurs in most test methodologies. Simple heuristics and
engineering judgment are required to determine the appropriate portioning of values
into equivalence classes, but once this is accomplished it is possible to generate
covering arrays of a few hundred to a few thousand tests for many applications. The
thoroughness of coverage will depend on resources and criticality of the application.

Practical Combinatorial Testing
__

 22

In many systems,
the order of inputs
is important.

5 SEQUENCE-COVERING ARRAYS

In testing event-driven software, the critical condition for triggering failures often is
whether or not a particular event has occurred prior to a second one, not necessarily if they
are back to back. This situation reflects the fact that in many cases, a particular state must
be reached before a particular failure can be triggered. For example, a failure might occur
when connecting device A only if device B is already connected. The methods described
in this chapter were developed to solve a real problem in interoperability test and
evaluation, using combinatorial methods to provide efficient testing. Sequence covering
arrays, as defined here, ensure that any t events will be tested in every possible t-way order.

For this problem we can define a sequence-covering
array [39, 40], which is a set of tests that ensure all t-way
sequences of events have been tested. The t events in the
sequence may be interleaved with others, but all permutations
will be tested. For example, we may have a component of a
factory automation system that uses certain devices interacting with a control program. We
want to test the events defined in Table 6.

There are 6! = 720 possible sequences for these six events, and the system should
respond correctly and safely no matter the order in which they occur. Operators may be
instructed to use a particular order, but mistakes are inevitable, and should not result in
injury to users or compromise the enterprise. Because setup, connections and operation of
this component are manual, each test can take a considerable amount of time. It is not
uncommon for system-level tests such as this to take hours to execute, monitor, and
complete. We want to test this system as thoroughly as possible, but time and budget
constraints do not allow for testing all possible sequences, so we will test all 3-event
sequences.

With six events, a, b, c, d, e, and f, one subset of three is {b, d, e}, which can be
arranged in six permutations: [b d e], [b e d], [d b e], [d e b], [e b d], [e d b]. A test that
covers the permutation [d b e] is: [a d c f b e]; another is [a d c b e f]. A larger example
system may have 10 devices to connect, in which case the number of permutations is 10!,
or 3,628,800 tests for exhaustive testing. In that case, a 3-way sequence covering array
with 14 tests covering all 7208910 =⋅⋅ 3-way sequences is a dramatic improvement, as is 72
tests for all 4-way sequences (see Table 8).

Event Description
a connect air flow meter
b connect pressure gauge
c connect satellite link
d connect pressure readout
e engage drive motor
f engage steering control

Table 6. System events

Practical Combinatorial Testing

 23

Definition. We define a sequence covering array, SCA(N, S, t) as an N x S matrix where
entries are from a finite set S of s symbols, such that every t-way permutation of symbols
from S occurs in at least one row; the t symbols in the permutation are not required to be
adjacent. That is, for every t-way arrangement of symbols x1, x2, ..., xt, the regular
expression .*x1.*x2.*xt.* matches at least one row in the array. Sequence covering arrays,
as the name implies, are analogous to standard covering arrays, which include at least one
of every t-way combination of any n variables, where t<n. A variety of algorithms are
available for constructing covering arrays, but these are not usable for generating t-way
sequences because they are designed to cover combinations in any order.

Example 1. Consider the problem of testing four events, a, b, c, and d. For convenience, a
t-way permutation of symbols is referred to as a t-way sequence. There are 4! = 24 possible
permutations of these four events, but we can test all 3-way sequences of these events with
only six tests (see Table 7).

Test
1 a d b c
2 b a c d
3 b d c a
4 c a b d
5 c d b a
6 d a c b

Table 7. Tests for four events.

5.1 Constructing Sequence Covering Arrays

A 2-way sequence covering array can be constructed by listing the events in some order for
one test and in reverse order for the second test:

1 a b c d
2 d c b a

To see that the procedure in Example 2 generates tests that cover all 2-way sequences, note
that for 2-way sequence coverage, every pair of variables x and y, x..y and y..x must both be
in some test (where a..b means that a is eventually followed by b). All variables are
included in each test, therefore any sequence x..y must be in either test 1 or test 2 and its
reverse y..x in the other test.

For t-way sequence test generation, where t > 2, we use a greedy algorithm that
generates a large number of tests, scores each by the number of previously uncovered
sequences it covers, then chooses the highest scoring test. This simple approach produces
surprisingly good results,

5.2 Using Sequence Covering Arrays

Sequence covering arrays have been incorporated into operational testing for a
mission-critical system that uses multiple devices with inputs and outputs to a laptop

Practical Combinatorial Testing
__

 24

computer. The test procedure has 8 steps: boot system, open application, run scan, connect
peripherals P-1 through P-5. It is expected that for some sequences, the system will not
function properly, thus the order of connecting peripherals is a critical aspect of testing. In
addition, there are constraints on the sequence of events: can't scan until the app is open;
can't open app until system is booted. There are 40,320 permutations of 8 steps, but some
are redundant (e.g., changing the order of peripherals connected before boot), and some are
invalid (violates a constraint). Around 7,000 are valid, and non-redundant, but this is far
too many to test for a system that requires manual, physical connections of devices.

 The system was tested using a seven-step sequence covering array, incorporating
the assumption that there is no need to examine strength-3 sequences that involve boot-up.
The initial test configuration (Figure 14) was drawn from the library of pre-computed
sequence tests. Some changes were made to the pre-computed sequences based on unique
requirements of the system test. If 6='Open App' and 5='Run Scan', then cases 1, 4, 6, 8,
10, and 12 are invalid, because the scan cannot be run before the application is started.
This was handled by 'swapping 0 and 1' when they are adjacent (1 and 4), out of order. For
the other cases, several cases were generated from each that were valid mutations of the
invalid case. A test was also embedded to see whether it mattered where each of three
USB connections were placed. The last test case ensures at least strength 2 (sequence of
length 2) for all peripheral connections and 'Boot', i.e., that each peripheral connection
occurs prior to boot. The final test array is shown in Table 9.

Test 1Test 1Test 1Test 1 0 1 2 3 4 5 6
Test 2Test 2Test 2Test 2 6 5 4 3 2 1 0
Test 3Test 3Test 3Test 3 2 1 0 6 5 4 3
Test 4Test 4Test 4Test 4 3 4 5 6 0 1 2
Test 5Test 5Test 5Test 5 4 1 6 0 3 2 5
Test 6Test 6Test 6Test 6 5 2 3 0 6 1 4
Test 7Test 7Test 7Test 7 0 6 4 5 2 1 3
Test 8Test 8Test 8Test 8 3 1 2 5 4 6 0
Test 9Test 9Test 9Test 9 6 2 5 0 3 4 1
Test 10Test 10Test 10Test 10 1 4 3 0 5 2 6
Test 11Test 11Test 11Test 11 2 0 3 4 6 1 5
Test 12Test 12Test 12Test 12 5 1 6 4 3 0 2

Figure 14. Seven-event test from pre-computed test library.

5.3 Cost and Practical Considerations

As with other forms of combinatorial testing, some combinations may be either impossible or
not exist on the system under test. For example, ‘receive message’ must occur before ‘process
message’. The algorithm we have developed makes it possible to specify pairs x,y, where the
sequence x..y is to be excluded from the generated covering array. Typically this will lead to extra
tests, but does not increase the test array significantly.

Practical Combinatorial Testing

 25

5.4 Chapter Summary

1. Sequence covering arrays are a new application of combinatorial methods, developed

by NIST to solve problems with interoperability testing. A sequence-covering array is
a set of tests that ensure all t-way sequences of events have been tested. The t events in
the sequence may be interleaved with others, but all permutations will be tested.

2. All 2-way sequences can be tested simply by listing the events to be tested in any order,

then reversing the order to create a second test. Algorithms have been developed to
create sequence covering arrays for higher strength interaction levels.

3. As with other types of combinatorial testing, constraints may be important, since it is

very common that certain events depend on others occurring first. The tools NIST has
developed for this problem allow the user to specify constraints in the form of excluded
sequences which will not appear in the generated test array.

Events 3-seq Tests 4-seq Tests

5 8 29
6 10 38
7 12 50
8 12 56
9 14 68

10 14 72
11 14 78
12 16 86
13 16 92
14 16 100
15 18 108
16 18 112
17 20 118
18 20 122
19 22 128
20 22 134
21 22 134
22 22 140
23 24 146
24 24 146
25 24 152
26 24 158
27 26 160
28 26 162
29 26 166
30 26 166
40 32 198
50 34 214
60 38 238
70 40 250
80 42 264
90 44

100 44

Table 8. Number of tests for combinatorial 3-way and 4-way sequences.

Practical Combinatorial Testing
__

 26

Table 9. Final sequence covering array used in testing.

Original
Case Case Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8

1 1 Boot P-1 (USB-RIGHT) P-2 (USB-BACK) P-3 (USB-LEFT) P-4 P-5 Application Scan
2 2 Boot Application Scan P-5 P-4 P-3 (USB-RIGHT) P-2 (USB-BACK) P-1 (USB-LEFT)
3 3 Boot P-3 (USB-RIGHT) P-2 (USB-LEFT) P-1 (USB-BACK) Application Scan P-5 P-4
4 4 Boot P-4 P-5 Application Scan P-1 (USB-RIGHT) P-2 (USB-LEFT) P-3 (USB-BACK)
5 5 Boot P-5 P-2 (USB-RIGHT) Application P-1 (USB-BACK) P-4 P-3 (USB-LEFT) Scan

6A 6 Boot Application P-3 (USB-BACK) P-4 P-1 (USB-LEFT) Scan P-2 (USB-RIGHT) P-5
6B 7 Boot Application Scan P-3 (USB-LEFT) P-4 P-1 (USB-RIGHT) P-2 (USB-BACK) P-5
6C 8 Boot P-3 (USB-RIGHT) P-4 P-1 (USB-LEFT) Application Scan P-2 (USB-BACK) P-5
6D 9 Boot P-3 (USB-RIGHT) Application P-4 Scan P-1 (USB-BACK) P-2 (USB-LEFT) P-5
7 10 Boot P-1 (USB-RIGHT) Application P-5 Scan P-3 (USB-BACK) P-2 (USB-LEFT) P-4

8A 11 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-LEFT) Application Scan P-5 P-1 (USB-BACK)
8B 12 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-BACK) P-5 Application Scan P-1 (USB-LEFT)
9 13 Boot Application P-3 (USB-LEFT) Scan P-1 (USB-RIGHT) P-4 P-5 P-2 (USB-BACK)

10A 14 Boot P-2 (USB-BACK) P-5 P-4 P-1 (USB-LEFT) P-3 (USB-RIGHT) Application Scan
10B 15 Boot P-2 (USB-LEFT) P-5 P-4 P-1 (USB-BACK) Application Scan P-3 (USB-RIGHT)
11 16 Boot P-3 (USB-BACK) P-1 (USB-RIGHT) P-4 P-5 Application P-2 (USB-LEFT) Scan

12A 17 Boot Application Scan P-2 (USB-RIGHT) P-5 P-4 P-1 (USB-BACK) P-3 (USB-LEFT)
12B 18 Boot P-2 (USB-RIGHT) Application Scan P-5 P-4 P-1 (USB-LEFT) P-3 (USB-BACK)
NA 19 P-5 P-4 P-3 (USB-LEFT) P-2 (USB-RIGHT) P-1 (USB-BACK) Boot Application Scan

Practical Combinatorial Testing

 27

Commonly used
coverage
measures do not
apply well to
combinatorial
testing.

6 MEASURING COMBINATORIAL COVERAGE

Since it is nearly always impossible to test all possible combinations, combinatorial
testing is a reasonable alternative. For some value of t, testing all t-way interactions among
n parameters will detect nearly all errors. It is possible that t = n, but recalling the
empirical data on failures, we would expect t to be relatively small. Determining the level
of input or configuration state space coverage can help in understanding the degree of risk
that remains after testing. If 90% - 100% of the state space has been covered, then
presumably the risk is small, but if coverage is much smaller, then the risk may be
substantial. This chapter describes some measures of combinatorial coverage that can be
helpful in estimating this risk that we have applied to tests for spacecraft software [50] but
have general application to any combinatorial coverage problem.

6.1 Software Test Coverage

Test coverage is one of the most important topics in software assurance. Users would
like some quantitative measure to judge the risk in using a product. For a given test set,
what can we say about the combinatorial coverage it provides? With physical products,
such as light bulbs or motors, reliability engineers can provide a probability of failure
within a particular time frame. This is possible because the failures in physical products
are typically the result of natural processes, such as metal fatigue.

With software the situation is more complex, and many
different approaches have been devised for determining software
test coverage. With millions of lines of code, or only with a few
thousand, the number of paths through a program is so large that
it is impossible to test all paths. For each if statement, there are
two possible branches, so a sequence of n if statements will
result in 2n possible paths. Thus even a small program with only
270 if statements in an execution trace may have more possible
paths than there are atoms in the universe, which is on the order of 1080. With loops (while
statements) the number of possible paths is literally infinite. Thus a variety of measures
have been developed to gauge the degree of test coverage. The following are some of the
better-known coverage metrics:

• Statement coverage: This is the simplest of coverage criteria – the percentage of
statements exercised by the test set. While it may seem at first that 100% statement
coverage should provide good confidence in the program, in practice, statement coverage is
a relatively weak criterion. At best, statement coverage represents a sanity check: unless
statement coverage is close to 100%, the test set is probably inadequate.

• Decision or branch coverage: The percentage of branches that have been
evaluated to both true and false by the test set.

Practical Combinatorial Testing
__

 28

• Condition coverage: The percentage of conditions within decision expressions
that have been evaluated to both true and false. Note that 100% condition coverage does
not guarantee 100% decision coverage. For example, “ if (A || B) {do something}
else {do something else} ” is tested with [0 1], [1 0], then A and B will both have
been evaluated to 0 and 1, but the else branch will not be taken because neither test leaves
both A and B false.

• Modified condition decision coverage (MCDC): This is a strong coverage
criterion that is required by the US Federal Aviation Administration for Level A
(catastrophic failure consequence) software; i.e., software whose failure could lead to
complete loss of life. It requires that every condition in a decision in the program has
taken on all possible outcomes at least once, and each condition has been shown to
independently affect the decision outcome, and that each entry and exit point have been
invoked at least once.

6.2 Combinatorial Coverage

Note that the coverage measures above depend on access to program source code.
Combinatorial testing, in contrast, is a black box technique. Inputs are specified and
expected results determined from some form of specification. The program is then treated
as simply a processor that accepts inputs and produces outputs, with no knowledge
expected of its inner workings.

Even in the absence of knowledge about a program’s inner structure, we can apply
combinatorial methods to produce precise and useful measures. In this case, we measure
the state space of inputs. Suppose we have a program that accepts two inputs, x and y, with
10 values each. Then the input state space consists of the 102 = 100 pairs of x and y values,
which can be pictured as a checkerboard square of 10 rows by 10 columns. With three
inputs, x, y, and z, we would have a cube with 103 = 1,000 points in its input state space.
Extending the example to n inputs we would have a (hard to visualize) hypercube of n
dimensions with 10n points. Exhaustive testing would require inputs of all 10n
combinations, but combinatorial testing could be used to reduce the size of the test set.

How should state space coverage be measured? Looking closely at the nature of
combinatorial testing leads to several measures that are useful. We begin by introducing
what will be called a variable-value configuration.

Definition. For a set of t variables, a variable-value configuration is a set of t valid values,
one for each of the variables.

Example. Given four binary variables, a, b, c, and d, a=0, c=1, d=0 is a variable-value
configuration, and a=1, c=1, d=0 is a different variable-value configuration for the same
three variables a, c, and d.

6.2.1 Simple t -way combination coverage
Of the total number of t-way combinations for a given collection of variables, what

percentage will be covered by the test set? If the test set is a covering array, then coverage

Practical Combinatorial Testing

 29

is 100%, by definition, but many test sets not based on covering arrays may still provide
significant t-way coverage. If the test set is large, but not designed as a covering array, it is
very possible that it provides 2-way coverage or better. For example, random input
generation may have been used to produce the tests, and good branch or condition coverage
may have been achieved. In addition to the structural coverage figure, for software
assurance it would be helpful to know what percentage of 2-way, 3-way, etc. coverage has
been obtained.

Definition : For a given test set for n variables, simple t-way combination coverage is the
proportion of t-way combinations of n variables for which all variable-values
configurations are fully covered.

Example. Figure 15 shows an example with four binary variables, a, b, c, and d, where
each row represents a test. Of the six 2-way combinations, ab, ac, ad, bc, bd, cd, only bd
and cd have all four binary values covered, so simple 2-way coverage for the four tests in
Figure 15 is 1/3 = 33.3%. There are four 3-way combinations, abc, abd, acd, bcd, each
with eight possible configurations: 000, 001, 010, 011, 100, 101, 110, 111. Of the four
combinations, none has all eight configurations covered, so simple 3-way coverage for this
test set is 0%.

a b c d

0 0 0 0

0 1 1 0

1 0 0 1

0 1 1 1

Figure 15. An example test array for a
 system with four binary components

6.2.2 (t + k)-way combination coverage
A test set that provides full combinatorial coverage for t-

way combinations will also provide some degree of coverage for
(t+1)-way combinations, (t+2)-way combinations, etc. This
statistic may be useful for comparing two combinatorial test sets.
For example, different algorithms may be used to generate 3-way
covering arrays. They both achieve 100% 3-way coverage, but if
one provides better 4-way and 5-way coverage, then it can be
considered to provide more software testing assurance.

Definition. For a given test set for n variables, (t+k)-way combination coverage is the
proportion of (t+k)-way combinations of n variables for which all variable-values
configurations are fully covered. (Note that this measure would normally be applied only
to a t-way covering array, as a measure of coverage beyond t).

Example. If the test set in Figure 15 is extended as shown in Figure 16, we can extend 3-
way coverage. For this test set, bcd is covered, out of the four 3-way combinations, so 2-
way coverage is 100%, and (2+1)-way = 3-way coverage is 25%.

A test set for t-way
interactions will
also cover some
higher strength
interactions at
t+1, t+2, etc.

Practical Combinatorial Testing
__

 30

a b c d
0 0 0 0

0 1 1 0

1 0 0 1

0 1 1 1

0 1 0 1

1 0 1 1

1 0 1 0

0 1 0 0

Figure 16. Eight tests for four binary variables.

6.2.3 Variable-Value Configuration coverage

So far we have only considered measures of the proportion of combinations for
which all configurations of t variables are fully covered. But when t variables with v
values each are considered, each t-tuple has vt configurations. For example, in pairwise (2-
way) coverage of binary variables, every 2-way combination has four configurations: 00,
01, 10, 11. We can define two measures with respect to configurations:

Definition. For a given combination of t variables, variable-value configuration coverage
is the proportion of variable-value configurations that are covered.

Definition. For a given set of n variables, (p, t)-completeness is the proportion of the C(n,
t) combinations that have configuration coverage of at least p [50].

Example. For Figure 16 above, there are C(4, 2) = 6 possible variable combinations and
C(4,2)22 = 24 possible variable-value configurations. Of these, 19 variable-value
configurations are covered and the only ones missing are ab=11, ac=11, ad=10, bc=01,
bc=10. But only two, bd and cd, are covered with all 4 value pairs. So for the basic
definition of simple t-way coverage, we have only 33% (2/6) coverage, but 79% (19/24) for
the configuration coverage metric. For a better understanding of this test set, we can
compute the configuration coverage for each of the six variable combinations, as shown in
Figure 17. So for this test set, one of the combinations (bc) is covered at the 50% level,
three (ab, ac, ad) are covered at the 75% level, and two (bd, cd) are covered at the 100%
level. And, as noted above, for the whole set of tests, 79% of variable-value
configurations are covered. All 2-way combinations have at least 50% configuration
coverage, so (.50, 2)-completeness for this set of tests is 100%.

 Although the example in Figure 17 uses variables with the same number of values,
this is not essential for the measurement. Coverage measurement tools that we have
developed compute coverage for test sets in which parameters have differing numbers of
values, as shown in Figure 18 and Figure 19.

Practical Combinatorial Testing

 31

• total 2-way coverage = 19/24 = .79167
• (.50, 2)-completeness = 6/6 = 1.0
• (.75, 2)-completeness = 5/6 = 0.83333
• (1.0, 2)-completeness = 2/6 = 0.33333

Figure 17. The test array covers all possible 2-way combinations of a, b, c,
 and d to different levels.

Figure 18 is an example of coverage for a 2873245 set (87 binary, two 3-value, and five 4-
value) of input variables (blue=2-way, pink=3-way, yellow=4-way). This particular test set
was not a covering array, but pairwise coverage is still quite good, with about 95% of the
variables having all possible 2-way configurations covered. Even for 4-way combinations
we see that all variables have at least 28% of their configurations covered, and about 25%
of them have about 98% or more of 4-way configurations covered. Figure 19 shows a
similar plot for a 27931416191 configuration.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.05 0.1 0.1

5
0.2 0.

25 0.3
0.

35 0.
4

0.4
5

0.
5

0.
55 0.6

0.6
5

0.7 0.7
5

0.8 0.8
5

0.
9

0.9
5 1

Percent of variable-value configurations

Le
ve

l o
f

co
ve

ra
ge

4-way

Figure 18. Configuration coverage for 2873245 inputs.

Vars Configurations covered Config coverage
a b 00, 01, 10 .75

a c 00, 01, 10 .75

a d 00, 01, 11 .75

b c 00, 11 .50

b d 00, 01, 10, 11 1.0

c d 00, 01, 10, 11 1.0

2-way

3-way

Practical Combinatorial Testing
__

 32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.
0

5

0.
1

0.
1

5

0.
2

0.
2

5

0.
3

0.
3

5

0.
4

0
.4

5

0
.5

0.
5

5

0
.6

0
.6

5

0
.7

0.
7

5

0
.8

0
.8

5

0
.9

0
.9

5 1

Percent of variable-value configurations

Le
ve

l o
f

co
ve

ra
ge

Figure 19. Configuration coverage for 27931416191 inputs.
6.3 Cost and Practical Considerations

 An important cost advantage introduced by coverage measurement is the ability to use
existing test sets, identify particular combinations that may be missing, and supplement
existing tests. In some cases, as in the example of Figure 18, it may be discovered that the
existing test set is already strong with respect to a particular strength t (in this case 2-way),
and tests for t+1 generated. The tradeoff in cost of applying coverage measurement is the
need to map existing tests into discrete numerical values that can be analyzed by the
coverage measurement tools (see Appendix C). For example, the days of the week in the
example of Figure 10 would have to be mapped into 0 - 6 or 1 - 7. Future versions of the
coverage measurement tools may include more flexibility in handling parameter values.

6.4 Chapter Summary

1. Many coverage measures have been devised for code coverage, including
statement, branch or decision, condition, and modified condition decision coverage. These
measures are based on aspects of source code and are not suitable for combinatorial
coverage measurement.

2. Measuring configuration-spanning coverage can be helpful in understanding state
space coverage. If we do use combinatorial testing, then configuration-spanning coverage
will be 100% for the level of t that was selected, but we may still want to investigate the
coverage our test set provides for t+1 or t+2. Calculating this statistic can help in choosing
between t-way covering arrays generated by different algorithms. As seen in the examples
above, it may be relatively easy to produce tests that provide a high degree of spanning
coverage, even if not 100%. In many cases it may be possible to generate additional tests
to boost the coverage of a test set.

3-way

4-way

2-way

Practical Combinatorial Testing

 33

7 COMBINATORIAL AND RANDOM TESTING

For testing to be most efficient and effective, we need an understanding of when a
particular test method is most appropriate. That is, what characteristics of a problem lead
us to use one form of testing over another, and what are the tradeoffs with respect to cost
and effectiveness? Some studies have compared the effectiveness of combinatorial and
random approaches to testing, but have reached conflicting results [3, 4, 56, 58]. This
chapter presents an analysis [37, 38] of these two methods and discusses how random
testing may complement combinatorial methods.

7.1 Coverage of Random Tests

Because a significant percentage of failures can only be triggered by the interaction of
two or more variables, one consideration in comparing random and combinatorial testing is
the degree to which random testing covers particular t-way combinations. Table 10 gives
the percentage of t-way combinations covered by a randomly generated test set of the same
size as a t-way covering array, for various combinations of k = number of variables and v =
number of values per variable. Note that the coverage could vary with different
realizations of randomly generated test sets. That is, a different random number generator,
or even multiple runs of the same generator, may produce slightly different coverage
(perhaps a few tests out of thousands, depending on the problem). Figure 20 through
Figure 24 summarize the coverage for arrays with variables of 2 to 10 values. As seen in
the figures, the coverage provided by a random test suite versus a covering array of the
same size varies considerably with different configurations.

Now consider the size of a random test set required to provide 100% combination

coverage. With the most efficient covering array algorithms, the difficulty of finding tests
with high coverage increases as tests are generated. Thus even if a randomly generated test
set provides better than 99% of the coverage of an equal sized covering array, it should not
be concluded that only a few more tests are needed for the random set to provide 100%
coverage. Table 11 gives the sizes of randomly generated test sets required for 100%
combinatorial coverage at various configurations, and the ratio of these sizes to covering
arrays computed with ACTS. Although there is considerable variation among
configurations, note that the ratio of random to combinatorial test set size for 100%
coverage exceeds 3 in most cases, with average ratios of 3.9, 3.8, and 3.2 at t = 2, 3, and 4
respectively. Thus, combinatorial testing retains a significant advantage over random
testing if the goal is 100% combination coverage for a given value of t.

Practical Combinatorial Testing
__

 34

Vars
Values/
Variable

ACTS
2-way
tests

Random
2-way

coverage

ACTS
3-way
tests

Random
3-way

coverage

ACTS
4-way
tests

Random
4-way

coverage
10 2 10 89.28% 20 92.18% 42 92.97%
10 4 30 86.38% 151 89.90% 657 92.89%
10 6 66 84.03% 532 91.82% 3843 94.86%
10 8 117 83.37% 1214 90.93% 12010 94.69%
10 10 172 82.21% 2367 90.71% 29231 94.60%
15 2 10 96.15% 24 97.08% 58 98.36%
15 4 33 89.42% 179 93.75% 940 97.49%
15 6 77 89.03% 663 95.49% 5243 98.26%
15 8 125 85.27% 1551 95.21% 16554 98.25%
15 10 199 86.75% 3000 94.96% 40233 98.21%
20 2 12 97.22% 27 97.08% 66 98.41%
20 4 37 90.07% 209 96.40% 1126 98.79%
20 6 86 91.37% 757 97.07% 6291 99.21%
20 8 142 89.16% 1785 96.92% 19882 99.22%
20 10 215 88.77% 3463 96.85% 48374 99.20%
25 2 12 96.54% 30 98.26% 74 99.18%
25 4 39 91.67% 233 97.49% 1320 99.43%
25 6 89 92.68% 839 97.94% 7126 99.59%
25 8 148 90.46% 1971 97.93% 22529 99.59%
25 10 229 89.80% 3823 97.82% 54856 99.58%

Table 10. Percent of t-way combinations covered by equal number of random
tests

Practical Combinatorial Testing

 35

2-way Tests 3-way Tests 4-way Tests

Vars

Valu
es

ACTS
Tests

Random
Tests Ratio

ACTS
Tests

Random
Tests Ratio

ACTS
Tests

Random
Tests Ratio

10 2 10 18 1.80 20 61 3.05 42 150 3.57

10 4 30 145 4.83 151 914 6.05 657 2256 3.43

10 6 66 383 5.80 532 1984 3.73 3843 13356 3.48

10 8 117 499 4.26 1214 5419 4.46 12010 52744 4.39

10 10 172 808 4.70 2367 11690 4.94 29231 137590 4.71

15 2 10 20 2.00 24 52 2.17 58 130 2.24

15 4 33 121 3.67 179 672 3.75 940 2568 2.73

15 6 77 294 3.82 663 2515 3.79 5243 17070 3.26

15 8 125 551 4.41 1551 6770 4.36 16554 60568 3.66

15 10 199 940 4.72 3000 15234 5.08 40233 159870 3.97

20 2 12 23 1.92 27 70 2.59 66 140 2.12

20 4 37 140 3.78 209 623 2.98 1126 3768 3.35

20 6 86 288 3.35 757 2563 3.39 6291 18798 2.99

20 8 142 630 4.44 1785 8450 4.73 19882 59592 3.00

20 10 215 1028 4.78 3463 14001 4.04 48374 157390 3.25

25 2 12 34 2.83 30 70 2.33 74 174 2.35

25 4 39 120 3.08 233 790 3.39 1320 3520 2.67

25 6 89 327 3.67 839 2890 3.44 7126 19632 2.75

25 8 148 845 5.71 1971 7402 3.76 22529 61184 2.72

25 10 229 1031 4.50 3823 16512 4.32 54856 191910 3.50

Ratio Average: 3.90 3.82 3.21

Table 11. Size of random test set required for 100% t-way combination
coverage.

Values

per
 variable

Ratio,
2-way

Ratio,
3-way

Ratio,
4-way

2 2.14 2.54 2.57
4 3.84 4.04 3.04
6 4.16 3.59 3.12
8 4.70 4.33 3.44
10 4.68 4.59 3.86

Table 12. Average ratio of random/ACTS for covering arrays
by values per variable, variables = 10, 15, 20, 25

Practical Combinatorial Testing
__

 36

7.2 Comparing Random and Combinatorial Coverage

The comparisons between random and combinatorial testing suggest a number of
conclusions:

• For binary variables (v=2), random tests compare reasonably well with covering
arrays (96% to 99% coverage) for all three values (2, 3, and 4) of t for 15 or more
variables. Thus random testing for a SUT with all or mostly binary variables may compare
favorably with combinatorial testing.

• Combination coverage provided by random generation of the equivalent number of
pairwise tests at (t = 2) decreases as the number of values per variable increases, and the
coverage provided by pairwise testing is significantly less than 100%. The effectiveness of
random testing relative to pairwise testing should be expected to decline as the average
number of values per variable increases.

• For 4-way interactions, coverage provided by random test generation increases
with the number of variables. Combinatorial testing for a module with approximately 10
variables should be significantly more effective than random testing, while the difference
between the two test methods should be less for modules with 20 or more variables.

• For 100% combination coverage, the efficiency advantage of combinatorial testing
varies directly with the number of values per variable and inversely with the interaction
strength t. Figure 25 illustrates how these factors (interaction strength t and values per
variable v) combine: the ratio of random/combinatorial coverage is highest for 10 variables
with t = 2, but declines for other pairings of t and v. To obtain 100% combination
coverage, random testing is significantly less efficient than combinatorial testing, requiring
2 to nearly 5 times as many tests as a covering array generated by ACTS. Thus if 100%
combination coverage is desired, combinatorial testing should be significantly less
expensive than random test generation.

An important practical consideration in comparing combinatorial with random testing is
the efficiency of the covering array generator. Algorithms have a very wide range in the
size of covering arrays they produce. It is not uncommon for the better algorithms to
produce arrays that are 50% smaller than other algorithms. We have found in comparisons
with other tools that there is no uniformly “best” algorithm. Other algorithms may produce
smaller or larger combinatorial test suites, so the comparable random test suite will vary in
the number of combinations covered. Thus random testing may fare better in comparison
with combinatorial tests produced by one of the less efficient algorithms.

 However there is a less obvious but important tradeoff regarding covering array size. An
algorithm that produces a very compact array, i.e., with few tests, for t-way combinations
may include fewer (t+1)-way combinations because there are fewer tests. Table 13 and
Table 14 illustrate this phenomenon for an example. Table 9 shows the percentage of t+1
up to t+3 combination coverage provided by the ACTS tests and in Table 10 the equivalent

Practical Combinatorial Testing

 37

A less optimal (by
size) array may
provide better
failure detection
because it
includes more
interactions at
t+1, t+2, etc.

number of random tests. Although ACTS pairwise tests
provide better 3-way coverage than the random tests, at other
interaction strengths and values of t, the random tests are
roughly the same or slightly better in combination coverage
than ACTS. Recall from Section 7.1 that pairwise
combinatorial tests detected slightly fewer events than the
equivalent number of random tests. One possible explanation
may be that the superior 4-way and 5-way coverage of the
random tests allowed detection of more events. Almost
paradoxically, an algorithm that produces a larger, sub-optimal
covering array may provide better failure detection because the
larger array is statistically more likely to include t+1, t+2, and higher degree interaction
tests as a byproduct of the test generation. Again, however, the less optimal covering array
is likely to more closely resemble the random test suite in failure detection.

Note also that the number of failures in the SUT can affect the degree to which random

testing approaches combinatorial testing effectiveness. For example, suppose the random
test set covers 99% of combinations for 4-way interactions, and the SUT contains only one
4-way interaction failure. Then there is a 99% probability that the random tests will
contain the 4-way interaction that triggers this failure. However, if the SUT contains m
independent failures, then the probability that combinations for all m failures are included
in the random test set is .99m. Hence with multiple failures, random testing may be
significantly less effective, as its probability of detecting all failures will be cm, for c =
percent coverage and m = number of failures.

t 3-way
coverage

4-way
coverage

5-way
coverage

2 .758 .429 .217
3 .924 .709
4 .974

Table 13. Higher interaction coverage of t-way tests

t 3-way
coverage

4-way
coverage

5-way
coverage

2 .735 .499 .306
3 .917 .767
4 .974

Table 14. Higher interaction coverage of random tests

Practical Combinatorial Testing
__

 38

Figure 20. Percent coverage of t-way combinations for v=2.

Figure 21. Percent coverage of t-way combinations for v=4.

Figure 22. Percent coverage of t-way combinations for v=6.

Practical Combinatorial Testing

 39

Figure 23. Percent coverage of t-way combinations for v=8.

Figure 24. Percent coverage of t-way combinations for v=10

2way 3way
4way

nval=2

nval=6

nval=10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Ratio

Interactions

Values per variable

4.50-5.00

4.00-4.50

3.50-4.00

3.00-3.50

2.50-3.00

2.00-2.50

1.50-2.00

1.00-1.50

0.50-1.00

0.00-0.50

Figure 25. Average ratio of random/ACTS for covering arrays by values per

variable

Practical Combinatorial Testing
__

 40

7.3 Cost and Practical Considerations

 The relationship between covering arrays and randomly generated tests presents some
interesting issues. Generating covering arrays for combinatorial tests is complex; it has
been shown to be an NP-hard problem. But generating tests randomly is trivial. Thus for
large problems, we can compare the cost and time of generating a covering array versus
producing tests randomly, measuring their coverage (Chapter 6), then adding tests as
needed to provide full combinatorial coverage. Notice the last column of Table 10. For 4-
way tests, once the number of parameters exceeds roughly 20, random generation will
cover 99% or more of 4-way combinations. If a problem requires tests for 100 parameters,
for example, covering array generators may require hours or days, or may simply be unable
to handle that many parameters, but random tests could be generated quickly and easily.
This is an option that may be cost effective even for smaller problems, and should be kept
in mind for test planning.

7.4 Chapter Summary

1. Existing research has shown either no difference (for some problems) or higher
failure detection effectiveness (for most problems) for combinatorial testing. Analyzing
random test sets suggests a number of reasons for this result. In particular, a highly
optimized t-way covering array may include fewer t+1, t+2, and higher degree interaction
tests than an equivalent sized random test set. Similarly, a covering array algorithm that
produces a larger, sub-optimal array may provide better failure detection because the larger
array is statistically more likely to include t+1, t+2, and higher degree interaction tests as a
byproduct of the test generation.

2. While the analysis reported here does not indicate that combinatorial testing is

uniformly better than random, it does support a preference for combinatorial methods if the
cost of applying the two test approaches is the same. This preference may be particularly
relevant if the SUT is likely to contain multiple failures (as is usually the case). Single
failures that depend on the interaction of two or more variables have a high likelihood of
being detected by random tests, because the random test set may cover a high percentage of
all t-way combinations. But the probability of detecting multiple failures declines rapidly
as cm, for c = percent coverage and m = number of independent failures.

Practical Combinatorial Testing

 41

With self-checking
through assertions,
thousands of tests
can often be run at
very low cost,
allowing high-
strength interaction
coverage.

8 ASSERTION-BASED TEST ORACLES

Many programming languages include an assert feature that allows the programmer
to specify properties that are assumed true at a particular point in the program. For
example, a function that includes a division in which a particular parameter x will be used
as a divisor may require that this parameter may never be zero. This function may include
the C statement assert(x != 0); as the first statement executed. Note that the
assertion is not the same as an input validity check that issues an error message if input is
not acceptable. The assertion gives conditions that must hold for the function to operate
properly, in this case a non-zero divisor. It is the responsibility of the programmer to ensure
that a zero divisor is never passed to the function. The distinction between assertions and
input validation code is that assertions are intended to catch programming mistakes, while
input validation detects errors in user or file/database input.

With a sufficient number of assertions derived from a

specification, the program can have a self-checking property
[27, 60, 47]. The assertions can serve as a sort of embedded
proof of important properties, such that if the assertions hold
for all executions of the program, then the properties
encoded in the assertions are guaranteed to hold. Then, if the
assertions form a chain of logic that implies a formal
statement of program properties, the program’s correctness
with respect to these properties can be proven. We can take
advantage of this scheme in combinatorial testing by
demonstrating that the assertions hold for all t-way
combinations of inputs. While this is not the same as a correctness proof, it is an effective
way of integrating formal methods for correctness with program testing, and an extensive
body of research has developed this idea for practical use (for a survey, see [4]). Some
modern programming languages, such as Eiffel [52], include extensive support for
including assertions that encode program properties, and tools such as the Java Modeling
Language [42] have been designed to integrate assertions with testing. In many cases,
using assertions to self-check important properties makes it practical to run thousands of
tests in a fully automated fashion, so high-strength interactions of 4-way and above can be
done in reasonable time.

8.1 Basic Assertions for Testing

 To clarify this somewhat abstract discussion, we will analyze requirements for a
small function that handles withdrawal processing for an automated teller machine (ATM).
Graphical user interface code for the ATM will not be displayed, as this would vary
considerably for different systems. The decision not to include GUI code in this example
also illustrates a practical limitation of this type of testing: there are many potential
sources of error in a software project, and testing may not deal with all of them at the same
time. The GUI code may be analyzed separately, or a more complex verification with
assertions may specify properties of the GUI calls, but in the end some human involvement

Practical Combinatorial Testing
__

 42

is needed to ensure that the screen information is properly displayed. However, we can do
very thorough testing of the most critical aspects of the withdrawal module.

Requirements for the module are as follows:

1. Some accounts have a minimum balance requirement, indicated by boolean

variable minflag .
2. The bank allows all customers a basic overdraft protection amount, but for a

fee, customers may purchase overdraft protection that exceeds the default.
3. If the account has a minimum balance, the withdrawal cannot reduce account

balance below (minimum balance – overdraft default) unless
overdraft protection is set for this account and the allowed overdraft amount for
this account exceeds the default, in which case the balance cannot be reduced
below (minimum balance – overdraft amount).

4. No withdrawals may exceed the default limit (to keep the ATM from running
out of cash), although some customers may have a withdrawal limit below this
amount, such as minors who have an account with limits placed by parents.

5. The overdraft privilege can be used only once until the balance is made positive
again.

6. Cards flagged as stolen are to be captured and logged in the hot card file. No
withdrawal is allowed for a card flagged as stolen.

The module has these inputs from the user after the user is authorized by another module:

string num: the user card number
int amt: withdrawal amount requested

and these inputs from the system:

int balance: user account balance
boolean minflag: account has minimum balance requi rement
int min: account minimum balance
boolean odflag: account has overdraft protection
int odamt: overdraft protection amount,
int oddefault: overdraft default
boolean hot: card flagged as stolen
boolean limflag: withdrawal limit less than defaul t
int limit: withdrawal limit for this account
int limdefault: withdrawal limit default

How should these requirements be translated into assertions and used in testing? Consider
requirement 1: if minflag is set, then the balance before and after the withdrawal must be
no less than the minimum balance amount. This could be translated directly into logic for
assertions: minflag => balance >= min. If the assertion facility does not include
logical implication, then the equivalent expression can be used, for example, in C syntax:
!minflag || balance >= min.

Practical Combinatorial Testing

 43

However, we must also consider overdraft protection and withdrawal limits, so the
assertion above is not adequate. Collecting conditions, we can develop assertions for each
of the eight possible settings of minflag , odflag , and limflag . If there is a minimum
balance requirement, no overdraft protection, and a withdrawal limit below the default,
what is the relationship between balance and the other parameters?

minflag && !odflag && limflag

=> balance >= min – oddefault && amt <= limit

This relation must hold after the withdrawal, so to develop an assertion that must hold
immediately before the withdrawal, substitute (balance – amt) for balance in the expression
above:

balance0 – amt >= min – oddefault && amt <= limit

Assertions such as this would be placed immediately before the balance is modified,

not at the beginning of the code for the withdrawal function. Code prior to the subtraction
from balance should have ensured that properties encoded by assertions hold immediately
before the subtraction, thus any violation of the assertions indicates an error in the code (or
possibly in the assertions!) that must be investigated. This is illustrated in Figure 26, where
“wdl_init.c” and “wdl_final.c” are files containing assertions such as developed above.

Including the card number, there are 11 parameters for this module. We need to

partition the inputs to determine what values to use in generating a covering array.
Partitions should cover valid and invalid values, minimum and maximum for ranges, and
values at and on either side of boundaries. The bank uses a check digit scheme for card
numbers to detect errors such as digit transposition when numbers are entered manually. A
simple partition could be as follows:

string acct: {valid, invalid}
int amt: {0, divisible by 20, not divisible by 20, max}
int balance: {0, negative, positive, max int}
int minflag: {T, F}
int min: {0, negative, positive, max int}
boolean odflag: {T, F}
int odamt: {0, negative, positive, max int}
int oddefault: {0, negative, positive, max int}
boolean hot: {T, F}
int acctlim: {0, negative, positive, max int}
int lim: {0, negative, positive, max int}

Using the equivalence classes above, this is thus a 2447 system, or 262,144 possible inputs.
If values on either side of boundaries are used, the number of possible input combinations
will be much larger, but using combinatorial methods we can cover 3-way or 4-way
combinations with only a few hundred tests.

Practical Combinatorial Testing
__

 44

1. while (!valid(acct)) {/* get account number input * /}
2. if (amt > lim) { return ERROR; }
3. else {
4. if (odflag) {
5. if (amt > balance + odamt)
6. { return ERROR; }
7. }
8. else {
9. if (amt > balance + oddefault)
10. {return ERROR; }
11. else {
12. if (amt > lim)
13. { return ERROR; }
14. }
15. #include "wdl_init.c"
16. balance -= amt ;
17. #include "wdl_final.c"
18. }
19. }
20. }

Figure 26. Withdrawal function code to be tested.

8.2 Stronger Assertion-based Testing

While the method described in the previous section can be very effective in testing,
notice that it will be inadequate for many problems, because basic assertion functions such
as in C language library do not support important logic operators such as ∀ (for all) and ∃
(for some). Thus expressing simple properties such as S is sorted in ascending order =

]1[][:10: +≤−<≤∀ iSiSnii cannot be done without a good deal of additional coding.
While it would be possible to add code to handle these problems in assertions, a better
solution is to use an assertion language that is designed for the purpose and contains all the
necessary features.

Tools such as Anna [44] for Ada, the Java Modeling language (JML) [42] and

iContract [28] for Java, and APP [57] or Nana [46] for C, can be used to introduce complex
assertions, effectively embedding a formal specification within the code. The embedded
assertions serve as an executable form of the specification, thus providing an oracle for the
testing phase. With embedded assertions, exercising the application with all t-way
combinations can provide reasonable assurance that the code works correctly across a very
wide range of inputs. This approach has been used successfully for testing smart cards,
with embedded JML assertions acting as an oracle for combinatorial tests [25]. Results
showed that 80% - 90% of errors could be found in this way.

Practical Combinatorial Testing

 45

8.3 Cost and Practical Considerations

Assertions may be a cost-effective approach to test automation because they can be a
simple extension of coding. In general, use of assertions is correlated with reduced error
rates [41], but a very wide range of effectiveness results from variations in usage. In many
applications, assertions are used in a very basic way, such as ensuring that null pointers are
not passed to a function that will use them, or that parameters that may be used as divisors
are non-zero.

More complex assertions can provide stronger assurance, but there are limits to their

effectiveness. For example, invariants (properties that are expected to hold throughout a
computation) cannot be assured without placing an assertion for every line of code. Since
assertions must be executed to show the presence or absence of a property at some point,
errors that prevent the assertion from being reached may not be detected. As an example,
consider the code in Figure 26. If a coding error in the first few lines of the function
prevents execution the code at of lines 15 and 17, the assertions will not be executed and it
may be assumed that the test was passed. In this case, an ERROR return for the particular
test case might trigger an investigation that would identify the faulty code, but this may not
happen with other applications.

8.4 Chapter Summary

Assertions are one of the easiest to use and most effective approaches to dealing with

the oracle problem. Properties ranging from simple parameter checks to effectively
embedded proofs can be encoded in assertions, but special language support is needed for
the stronger forms of assurance. This support may be provided as language preprocessors,
as in the case of Anna [44] and others. Placement within code is particularly important to
assertion effectiveness [60, 61], but if sufficiently strong assertions are embedded, the code
becomes self-checking for important properties. With self-checking code, thousands of
tests can be run at low cost in most cases, greatly improving the chances that faults will be
detected.

Practical Combinatorial Testing
__

 46

9 MODEL-BASED TEST ORACLES

One of the most effective ways to produce test oracles is to use a model of the
system under test, and generate complete tests, including both input data and expected
results, directly from the model. The model in this case is exactly what the name implies:
it incorporates the most important aspects of the system, but not every detail such as the
location of an amount on a screen (if it did include all details, it would be equivalent to the
system itself). This chapter provides a step-by-step introduction to model-based automated
generation of tests that provide combinatorial coverage. Procedures introduced in this
tutorial will produce a set of complete tests, i.e., input values with the expected output for
each set of inputs.

In addition to the ACTS covering array generator, (see Appendix C), we use
NuSMV [18], a variant of the original SMV model checker. NuSMV is freely available
and was developed by Carnegie Mellon University, Instituto per la Ricerca Scientifica e
Tecnolgica (IRST), U. of Genova, and U. of Trento. NuSMV can be installed on either
UNIX/Linux or Windows systems running Cygwin. Links and instructions for
downloading NuSMV are included in the appendix.

Also needed is a formal or semi-formal specification of the system or subsystem
under test (SUT). This can be in the form of a formal logic specification, but state
transition tables, decision tables, pseudo-code, or structured natural language can also be
used, as long as the rules are unambiguous. The specification will be converted to SMV
code, which provides a precise, machine-processable set of rules that can be used to
generate tests.

9.1 Overview

To apply combinatorial testing, two tasks must be accomplished:

1. Using ACTS, construct a set of tests that will cover all t-way combinations of
parameter values. The covering array specifies test data, where each row of the array can
be regarded as a set of parameter values for an individual test (see Chapter 4).

2. Determine what output should be produced by the SUT for each set of input parameter
values. The test data output from ACTS will be incorporated into SMV specifications that
can be processed by the NuSMV model checker for this step. In many cases, the
conversion to SMV will be straightforward. The example in Section 9.2.1 illustrates a
simple conversion of rules in the form “if condition then action” into the syntax used by the
model checker. The model checker will instantiate the specification with parameter values
from the covering array once for each test in the covering array. The resulting specification
is evaluated against a claim that negates each specified result Rj using a model checker, so
that the model checker evaluates claims in the following form: Ci => ~Rj, where Ci is a set
of parameter values in one row of the covering array in the form p1 = vi1 & p2 = vi2 & ... &

Practical Combinatorial Testing

 47

pn = vin, and Rj is one of the possible results. The output of this step is a set of
counterexamples that show how the SUT can reach the claimed result Rj from a given set
of inputs.

The example in the following sections illustrates how these counterexamples are converted
into tests. Other approaches to determining the correct output for each test can also be
used. For example, in some cases we can run a model checker in simulation mode,
producing expected results directly rather than through a counterexample.

The completed tests can be used to validate correct operation of the system for
interaction strengths up to some pre-determined level t. Depending on the system type and
level of effort, we may want to use pairwise (t=2) or higher strength, up to t=6 way
interactions. We do not claim this guarantees correctness of the system, as there may be
failures triggered only by interaction strengths greater than t. In addition, some of the
parameters are likely to have a large number of possible values, requiring that they be
abstracted into equivalence classes. If the abstraction does not faithfully represent the
range of values for a parameter, some flaws may not be detected by equivalence classes
used.

9.2 Access Control System Example

Here we present a small example of a very simple access control system. The rules
of the system are a simplified multi-level security system, given below, followed by a step-
by-step construction of tests using a fully automated process.

Each subject (user) has a clearance level u_l, and each file has a classification level,
f_l. Levels are given as 0, 1, or 2, which could represent levels such as Confidential,
Secret, and Top Secret. A user u can read a file f if u_l ≥ f_l (the “no read up” rule), or
write to a file if f_l ≥ u_l (the “no write down” rule).

Thus a pseudo-code representation of the access control rules is:

if u_l >= f_l & act = rd then GRANT;
 else if f_l >= u_l & act = wr then GRANT;
 else DENY;

Tests produced will check that these rules are correctly implemented in a system.

9.2.1 SMV Model

This system is easily modeled in SMV as a simple two-state finite state machine. The
START state merely initializes the system (line 8, Figure 27), with the rule above used to
evaluate access as either GRANT or DENY (lines 9-13). For example, line 9 represents
the first line of the pseudo-code above: in the current state (always START for this simple
model), if u_l ≥ f_l then the next state is GRANT. Each line of the case statement is
examined sequentially, as in a conventional programming language. Line 12 implements
the “else DENY” rule, since the predicate “1” is always true. SPEC clauses given at the

Practical Combinatorial Testing
__

 48

end of the model are simple “reflections” that duplicate the access control rules as temporal
logic statements. They are thus trivially provable, but we are interested in using them to
generate tests rather than to prove properties of the system.

1. MODULE main
2. VAR
--Input parameters
3. u_l: 0..2; -- user level
4. f_l: 0..2; -- file level
5. act: {rd,wr}; -- action

--output parameter
6. access: {START_, GRANT,DENY};

7. ASSIGN
8. init(access) := START_;
--if access is allowed under rules, then next state is GRANT
--else next state is DENY
9. next(access) := case
10. u_l >= f_l & act = rd : GRANT;
11. f_l >= u_l & act = wr : GRANT;
12. 1 : DENY;
13. esac;
14. next(u_l) := u_l;
15. next(f_l) := f_l;
16. next(act) := act;

-- if user level is at or above file level then rea d is OK
SPEC AG ((u_l >= f_l & act = rd) -> AX (access = G RANT));

-- if user level is at or below file level, then wr ite is OK
SPEC AG ((f_l >= u_l & act = wr) -> AX (access = G RANT));

-- if neither condition above is true, then DENY an y action
SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))

 -> AX (access = DENY));

Figure 27. SMV model of access control rules

 Separate documentation on SMV should be consulted to fully understand the syntax used,
but specifications of the form “AG ((predicate 1) -> AX (predicate 2))” indicate
essentially that for all paths (the “A” in “AG”) for all states globally (the “G”), if predicate
1 holds then (“->”) for all paths, in the next state (the “X” in “AX”) predicate 2 will hold.
In the next section we will see how this specification can be used to produce complete
tests, with test data input and the expected output for each set of input data.

 Model checkers can be used to perform a variety of valuable functions, because
they make it possible to evaluate whether certain properties are true of the system model.
Conceptually, the model checker can be viewed as exploring all states of a system model to
determine if a property claimed in a SPEC statement is true. If the statement can be proved

Practical Combinatorial Testing

 49

true for the given model, the model checker reports this fact. What makes a model checker
particularly valuable for many applications, though, is that if the statement is false, the
model checker not only reports this, but also provides a “counterexample” showing how
the claim in the SPEC statement can be shown false. The counterexample will include
input data values and a trace of system states that lead to a result contrary to the SPEC
claim (Figure 28). In the process described in this section, the input data values will be the
covering array generated by ACTS.

For advanced uses in test generation, this counterexample generation capability is
very useful for proving properties such as liveness (absence of deadlock) that are difficult
to ensure through testing. In this tutorial, however, we will simply use the model checker
to determine whether a particular input data set makes a SPEC claim true or false. That is,
we will enter claims that particular results can be reached for a given set of input data
values, and the model checker will tell us if the claim is true or false. This gives us the
ability to match every set of input test data with the result that the system should produce
for that input data.
 The model checker thus automates the work that normally must be done by a
human tester – determining what the correct output should be for each set of input data. In
some cases, we may have a “reference implementation”, that is, an implementation of the
functions that we are testing that is assumed to be correct. This happens, for example, in
conformance testing for protocols, where many vendors implement their own software for
the protocol and submit it to a test lab for comparison with an existing implementation of
the protocol. In this case the reference implementation could be used for determining the
expected output, instead of the model checker. Of course before this can happen the
reference implementation itself must be thoroughly tested before it can be used as the gold
standard for testing other products, so the method we describe here may be needed to
produce tests for the original reference implementation.

Checking the properties in the SPEC statements shows that they match the access
control rules as implemented in the FSM, as expected. In other words, the claims we made
about the state machine in the SPEC clauses can be proven. This step is used to check that
the SPEC claims are valid for the model defined previously. If NuSMV is unable to prove
one of the SPECs, then either the spec or the model is incorrect. This problem must be
resolved before continuing with the test generation process. Once the model is correct and
SPEC claims have been shown valid for the model, counterexamples can be produced that
will be turned into test cases, by which we mean a set of test inputs with the expected result
for these inputs. In other words, ACTS is used to generate tests, then the model checker
determines expected results for each test.

 -- specification AG((u_l >= f_l & act = rd) -> AX access = GRANT)
 is true

-- specification AG((f_l >= u_l & act = wr) -> AX a ccess = GRANT)
 is true

-- specification AG(!((u_l >= f_l & act = rd)|(f_l >= u_l & act = wr))
 -> AX access = DENY) is true

Figure 28. NuSMV output

Practical Combinatorial Testing
__

 50

9.2.2 Integrating Combinatorial Tests into the Model

We will compute covering arrays that give all t-way combinations, with degree of
interaction coverage = 2 for this example. This section describes the use of ACTS as a
standalone command line tool, using a text file input (see Section 3.1). The first step is to
define the parameters and their values in a system definition file that will be used as input
to ACTS. Call this file “in.txt”, with the following format:

[System]
[Parameter]

u_l: 0,1,2
f_l: 0,1,2
act: rd,wr

[Relation]
[Constraint]
[Misc]

For this application, the [Parameter] section of the file is all that is needed. Other tags refer
to advanced functions that will be explained in other documents. After the system
definition file is saved, run ACTS as shown below:

java -Ddoi=2 –jar acts_cmd.jar ActsConsoleManager i n.txt out.txt

The “-Ddoi=2” argument sets the degree of interaction for the covering array that we want
ACTS to compute. In this case we are using simple 2-way, or pairwise, interactions. (For
a system with more parameters we would use a higher strength interaction, but with only
three parameters, 3-way interaction would be equivalent to exhaustive testing.) ACTS
produces the output shown in Figure 29.

Each test configuration defines a set of values for the input parameters u_l, f_l, and
act. The complete test set ensures that all 2-way combinations of parameter values have
been covered. If we had a larger number of parameters, we could produce test
configurations that cover all 3-way, 4-way, etc. combinations. ACTS may output “don’t
care” for some parameter values. This means that any legitimate value for that parameter
can be used and the full set of configurations will still cover all t-way combinations. Since
“don’t care” is not normally an acceptable input for programs being tested, a random value
for that parameter is substituted before using the covering array to produce tests.

Practical Combinatorial Testing

 51

Number of parameters: 3
Maximum number of values per parameter: 3
Number of configurations: 9

Configuration #1:
1 = u_l=0
2 = f_l=0
3 = act=rd

Configuration #2:
1 = u_l=0
2 = f_l=1
3 = act=wr

Configuration #3:
1 = u_l=0
2 = f_l=2
3 = act=rd

Configuration #4:
1 = u_l=1
2 = f_l=0
3 = act=wr

Configuration #5:
1 = u_l=1
2 = f_l=1
3 = act=rd

Configuration #6:
1 = u_l=1
2 = f_l=2
3 = act=wr

Configuration #7:
1 = u_l=2
2 = f_l=0
3 = act=rd

Configuration #8:
1 = u_l=2
2 = f_l=1

3 = act=wr

Configuration #9:
1 = u_l=2
2 = f_l=2
3 = (don't care)

Figure 29. ACTS output

The next step is to assign values from the covering array to parameters used in the
model. For each test, we claim that the expected result will not occur. The model checker

Practical Combinatorial Testing
__

 52

determines combinations that would disprove these claims, outputting these as
counterexamples. Each counterexample can then be converted to a test with known
expected result. Every test from the ACTS tool is used, with the model checker supplying
expected results for each test. (Note that the trivially provable positive claims have been
commented out. Here we are concerned with producing counterexamples.)

Recall the structure introduced in Section 9.1: Ci => ~Rj. Here Ci is the set of

parameter values from the covering array. For example, for configuration #1 in Section:

u_l = 0 & f_l = 0 & act = rd

As can be seen below, for each of the 9 configurations in the covering array

we create a SPEC claim of the form:

SPEC AG((<covering array values>) -> AX !(access = <result>));

This process is repeated for each possible result, in this case either “GRANT” or
“DENY”, so we have 9 claims for each of the two results. The model checker is able to
determine, using the model defined in Section 9.2.1, which result is the correct one for each
set of input values, producing a total of 9 tests.

Excerpt:
...
-- reflection of the assign for access
--SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));
--SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));
--SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))
 -> AX (access = DENY));

SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(acce ss = GRANT));

SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(acce ss = DENY));
SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(acce ss = DENY));
SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(acce ss = DENY));
SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(acce ss = DENY));
SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(acce ss = DENY));
SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(acce ss = DENY));
SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(acce ss = DENY));
SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(acce ss = DENY));
SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(acce ss = DENY));

Practical Combinatorial Testing

 53

9.2.3 Generating Tests from Counterexamples

NuSMV produces counterexamples where the input values would disprove the
claims specified in the previous section. Each of these counterexamples is thus a set of test
data that would have the expected result of GRANT or DENY.

For each SPEC claim, if this set of values cannot in fact lead to the particular result
Rj, the model checker indicates that this is true. For example, for the configuration below,
the claim that access will not be granted is true, because the user’s clearance level (u_l =

0) is below the file’s level (f_l = 2):
-- specification AG (((u_l = 0 & f_l = 2) & act = r d) -> AX
!(access = GRANT)) is true

If the claim is false, the model checker indicates this and provides a trace of

parameter input values and states that will prove it is false. In effect this is a complete test
case, i.e., a set of parameter values and expected result. It is then simple to map these
values into complete test cases in the syntax needed for the system under test.

Excerpt from NuSMV output:

-- specification AG (((u_l = 0 & f_l = 0) & act = r d) -> AX
 access = GRANT)) is false

-- as demonstrated by the following execution seque nce
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
 u_l = 0
 f_l = 0
 act = rd
 access = START_
-> Input: 1.2 <-
-> State: 1.2 <-
 access = GRANT

The model checker finds that 6 of the input parameter configurations produce a result of
GRANT and 3 produce a DENY result, so at the completion of this step we have
successfully matched up each input parameter configuration with the result that should be
produced by the SUT.

We now strip out the parameter names and values, giving tests that can be applied
to the system under test. This can be accomplished using a variety of methods; a simple
script used in this example is given in the appendix. The test inputs and expected results
produced are shown below:

 u_l = 0 & f_l = 0 & act = rd -> access = GRANT
 u_l = 0 & f_l = 1 & act = wr -> access = GRANT
 u_l = 1 & f_l = 1 & act = rd -> access = GRANT
 u_l = 1 & f_l = 2 & act = wr -> access = GRANT
 u_l = 2 & f_l = 0 & act = rd -> access = GRANT

Practical Combinatorial Testing
__

 54

 u_l = 2 & f_l = 2 & act = rd -> access = GRANT
 u_l = 0 & f_l = 2 & act = rd -> access = DENY
 u_l = 1 & f_l = 0 & act = wr -> access = DENY
 u_l = 2 & f_l = 1 & act = wr -> access = DENY

These test definitions can now be post-processed using simple scripts written in PERL,
Python, or similar tool to produce a test harness that will execute the SUT with each input
and check the results. While tests for this trivial example could easily have been
constructed manually, the procedures introduced in this tutorial can, and have, been used to
produce tens of thousands of complete test cases in a few minutes, once the SMV model
has been defined for the SUT.

9.3 Cost and Practical Considerations

Model based test generation trades up-front analysis and specification time against the
cost of greater human interaction for analyzing test results. The model or formal
specification may be costly to produce, but once it is available, large numbers of tests can
be generated, executed, and analyzed without human intervention. This can be an
enormous cost savings, since testing usually requires 50% or more of the software
development budget. For example, suppose a $100,000 development project expects to
spend $50,000 on testing, because of the staff time required to code and run tests, and
analyze results. If a formal model can be created for $20,000, complete tests generated and
analyzed automatically, with another $10,000 for a smaller number of human-involved
tests and analysis, then the project will save 20%. One tradeoff for this savings is the
requirement for staff with skills in formal methods, but in some cases this approach may be
practical and highly cost-effective.

9.4 Chapter Summary

1. The oracle problem must be solved for any test methodology, and it is particularly

important for thorough testing that produces a large number of test cases. One
approach to determining expected results for each test input is to use a model of the
system that can be simulated or analyzed to compute output for each input.

2. Model checkers can be used to solve the oracle problem because whenever a specified

property for a model does not hold, the model checker generates a counter-example.
The counter-example can be post-processed into a complete working test harness that
executes all tests from the covering array and checks results.

3. Several approaches are possible for integrating combinatorial testing with model

checkers, but some present practical problems. The method reported in this chapter can
be used to generate full combinatorial test suites, with expected results for each test, in
a cost effective way.

Practical Combinatorial Testing

 55

10 FAULT LOCALIZATION

 Developing dependable software requires preventing as many bugs as possible and
detecting, then repairing, those that remain. Testing can identify flaws in software, but
after a failed test is discovered, it is necessary to determine what caused the failure. In
most cases this may be accomplished for combinatorial testing in the same way as other
test methodologies, using a debugger or in-circuit emulator. But one goal of combinatorial
testing is to identify the particular t-way combination that triggered a failure. The problem
of fault localization, identifying such combination(s), is an area of active research, but
some basic approaches can be identified. The discussion in this chapter assumes systems
are deterministic, such that a particular input always generates the same output.

 At first glance, fault localization may not appear to be a difficult problem, and in many
cases it will not be, but we want to automate the process as much as possible. To
understand the size of the problem, consider a module that has 20 input parameters. A set
of 3-way covering tests passes 100%, but several tests derived from a 4-way covering array
result in failure. (Therefore, at least four parameter values are involved in triggering the
failure. It is possible that a 5-way or higher combination caused the failure, since any set
of t-way tests also includes (t+1)-way and higher strength combinations as well.) A test
with 20 input parameters has C(20, 4) = 4,845 4-way combinations, yet presumably only
one (or just a few) of these triggered the failure. To determine the combination at fault, a
variety of strategies can be used.

10.1 Set-theoretic Analysis

 The analysis presented here applies to a deterministic system, in which a particular set
of input values always results in the same processing and outputs. Let P = {combinations
in passing tests} and F = {combinations in failing tests} and C = {fault-triggering
combinations}. Then PF \ , combinations in failing tests that are not in any passing tests,
must contain the fault-triggering combinations C because if any of those in C were in P,
then the test would have failed. So in most cases, PFC \⊆ , as shown in Figure 30.

PFC \⊆

Figure 30. Combinations in failing tests but not in passing tests.

P F
PFC \⊆

Practical Combinatorial Testing
__

 56

Continuing with the analysis in this manner, some properties become apparent. For the
discussion below, Pt = {combinations in t-way passing tests}, with Ft and Ct defined
analogously. Let Tt = {t-way tests} and f(x) be a function that indicates whether a test x
passes or fails for the system under test. Thus P4 = {combinations in 4-way passing tests},
T5= {5-way tests}, etc.

Suppose that a particular combination c triggers or causes a failure if whenever c is
contained in some test x, f(x) = fail. (That is, the system is deterministic and the failure-
triggering combination is not masked by other parameter values.) We can now consolidate
these ideas into heuristics for identifying the failure-triggering combination(s) C.

• Elimination: For a deterministic system, PF \ must contain the fault-triggering

combinations C because if any of those in C were in P, then the test would have
failed.

• Interaction level lower bound: If all t-way tests pass, then a t-way or lower strength

combination did not cause the failure. The failure must have been caused by a
(t+k)-way combination, for some k > t. Note that the converse is not necessarily
true: if some t-way test fails, we cannot conclude that a t-way test caused the
failure, because any t-way test set contains some k-way combinations, for k > t.

• Interaction continuity: Now consider Ct. Because t-way tests cover all

combinations of t-way or lower strength (e.g., 4-way tests also cover all 3-way
combinations), a combination that triggered the failure in Ft must also occur in
F(t+1), F(t+2), etc. Therefore we can further reduce the potential failure-triggering
combinations by computing)(...)1(ktFtFFt ++ III for whatever interaction
strength k we have tests available.

• Value dependence: If tests in Ft cover all values for a t-way parameter combination

c, then the failure is independent of c; i.e., c is not a t-way failure-triggering
combination(s).

Example: In the preceding discussion we assumed that a particular combination c triggers
or causes a failure if whenever c is contained in some test x, f(x) = fail. However, in many
cases the presence of a particular combination may trigger a failure, but is not guaranteed
to do so (see discussion of interaction level lower bound above). Consider the following:

1. p(int a, int b, int c, int d, int e) {
2. if (a && b) return 1;
3. else if (c && d) return 2;
4. else if (e) return 3;
5. else return 4;
6. }

If line 3 is incorrectly implemented as “return 7” instead of “return 2”, then p(1,1,1,1,0) =

Practical Combinatorial Testing

 57

 1 because “a && b” evaluates to 1, but p(0,1,1,1,0) will detect the error. A complete 3-
way covering test set will detect the error because it must include at least one test with
values 0,1,1,1,. and one with 1,0,1,1,. . Figure 31 shows tests for this example for t = 2, 3,
and 4. Failing tests are underlined.

A 2-way test may detect the error, since “c && d” is the condition necessary, but
this will only occur if line 3 is reached, which requires either a=0 or b=0. In the example
test set this occurs with the second test. So in this case, a full 2-way test set has detected
the error, and the heuristics above for 2-way combinations will find that tests with c=1 and
d=1 occur in both P and F. In this case, debugging may identify c=1, d=1 as a combination
that triggers the failure, but automated analysis using the heuristics will find two 3-way
combinations that occur in failing tests but not passing tests: a=0, c=1, d=1 and b=0, c=1,
d=1. As Figure 32 illustrates, in most cases we will find more than one combination
identified as possible causes of failure.

1 way tests 2 way tests 3 way tests 4 way tests
0,0,0,0,0
1,1,1,1,1

0,0,0,0,0
0,1,1,1,1
1,0,1,0,1
1,1,0,1,0
1,1,1,0,0
1,0,0,1,1

0,0,0,0,0
0,0,1,1,1
0,1,0,1,0
0,1,1,0,1
1,0,0,1,1
1,0,1,0,0
1,1,0,0,1
1,1,1,1,0
0,0,1,1,0
1,1,0,0,0
0,0,0,0,1
1,1,1,1,1
0,1,1,1,0

0,0,0,0,0
0,0,0,1,1
0,0,1,0,1
0,0,1,1,0
0,1,0,0,1
0,1,0,1,0
0,1,1,0,0
0,1,1,1,1
1,0,0,0,1
1,0,0,1,0
1,0,1,0,0
1,0,1,1,1
1,1,0,0,0
1,1,0,1,1
1,1,1,0,1
1,1,1,1,0

Figure 31. Tests for fault location example.

The heuristics above can be applied to combinations in the failed tests to identify possible
failure-triggering combinations, shown in Figure 32.

• The 1-way tests do not detect any failures, but the 2-way tests do, so t=2 is a lower

bound for the interaction level needed to detect a failure.

• The value dependence rule applies to combination “be” – since all four possible

values for this combination occur in failing tests, failure must be independent of
combination be. In other words, we do not consider the pair be to be a cause of

Practical Combinatorial Testing
__

 58

failure because it does not matter what value this pair has. Every test must have
some value for these parameters.

t=2 ab

01
00
10

ac
01
11

ad
01
11

ae
01
00
11

bc
11
01

bd
11
01

be
11
01
00
10

cd
11

ce
11
10

de
11
10

t=3 abc
011
001
101

abd
011
001
101

abe
011
001
000
101
010

acd
011
111

ace
011
010
111

ade
011
010
111

bcd
111
011

bce
111
011
010
110

bde
111
011
010
110

cde
111
110

t=4 abcd
0111
0011
1011

abce
0111
0011
0010
1011
0110

abde
0111
0011
0010
1011
0110

bcde
1111
0111
0110
1110

Figure 32. Combinations in failing tests.
• The elimination rule can be applied to determine that there are no 1-way or 2-way

combinations that do not appear in both passing and failing tests. Results for 3-way
and 4-way combinations are shown in Figure 33. These results were produced by
an analysis tool which outputs in the format <test number>:<t level> <parameter
numbers> = <parameter values>. Two different 3-way combinations are identified:
a=0, c=1, d=1 and b=0, c=1, d=1. A large number of 4-way combinations are also
identified, but we can use the interaction continuity rule to show that one of the two
3-way combinations occurs in all of the failing 4-way failing tests. Therefore we
can conclude that covering all 3-way parameter interactions would detect the error.

1 :3way 0,2,3 = 0,1,1
2 :3way 0,2,3 = 0,1,1
3 :3way 0,2,3 = 0,1,1
4 :3way 0,2,3 = 0,1,1
1 :3way 1,2,3 = 0,1,1
2 :3way 1,2,3 = 0,1,1
5 :3way 1,2,3 = 0,1,1

1 :4way 0,1,2,3 = 0,0,1,1
2 :4way 0,1,2,3 = 0,0,1,1
3 :4way 0,1,2,3 = 0,1,1,1
4 :4way 0,1,2,3 = 0,1,1,1
5 :4way 0,1,2,3 = 1,0,1,1
1 :4way 0,1,2,4 = 0,0,1,0
1 :4way 0,1,3,4 = 0,0,1,0
4 :4way 0,1,3,4 = 0,1,1,1
1 :4way 0,2,3,4 = 0,1,1,0
2 :4way 0,2,3,4 = 0,1,1,1
3 :4way 0,2,3,4 = 0,1,1,0
4 :4way 0,2,3,4 = 0,1,1,1
1 :4way 1,2,3,4 = 0,1,1,0
2 :4way 1,2,3,4 = 0,1,1,1
5 :4way 1,2,3,4 = 0,1,1,1

Figure 33. 3-way and 4-way combinations in PF \

Practical Combinatorial Testing

 59

The situation is more complex with continuous variables. If, for example, a failure-
related branch is taken any time x > 100, y = 3, z < 1000, there may be many combinations
implicated in the failure. Analysis will show that [x = 200, y = 3, z = 120], [x = 201, y = 3,
z = 119], [x = 999, y = 3, z = 999], [x = 101, y = 3, z = 0], [x = 200, y = 3, z = 0] are all
combinations that trigger the failure. With more than three input parameters, there may be
dozens or hundreds of failure-triggering combinations, even though there is most likely a
single point in the code that is in error.

10.2 Cost and Practical Considerations

As shown in the example above, it is a non-trivial matter to determine the failure-
triggering combination(s) from test results alone. When source code is available, the
methods described in this section are probably unnecessary, and can be replaced with
conventional debugging techniques. In black-box testing situations where there is no
source code, these methods may be useful in narrowing the search for failure-triggering
combinations. Tools to implement these methods have been developed and are available
from the ACTS project site.

10.3 Chapter Summary

When source code is available, the best way to identify the cause of a failure is with
conventional debugging techniques, since the error must be fixed in code anyway. With
pure black-box testing and no access to source code, the heuristics discussed in this chapter
may help to narrow down possible causes. Usually there will be many combinations
identified as possible causes, so substantial additional testing may be needed to determine
the exact cause.

Practical Combinatorial Testing
__

 60

Appendix A – MATHEMATICS REVIEW

This appendix reviews a few basic facts of combinatorics, regular expressions, and
mathematical logic that are necessary to understand the concepts in this publication.

Combinatorics

Permutations and Combinations
For n variables, there are n! permutations and

)!(!

!

tnt

n

t

n

−=

 (“n choose t”) combinations

of t variables, also written for convenience as C(n ,t). To exercise all of the t-way
combinations of inputs to a program, we need to cover all t-way combinations of variable
values, and each combination of t values can have vt configurations, where v is the number
of values per variable. Thus the total number of combinations instantiated with values that
must be covered is

 vt

t

n (1)

Fortunately, each test covers C(n, t) combination configurations. This fact is the source of
combinatorial testing’s power. For example, with 34 binary variables, we would need 234 =
1.7 * 1010 tests to cover all possible configurations, but with only 33 tests we can cover all
3-way combinations of these 34 variables. This happens because each test covers C(34, 3)
combinations.

Example. If we have five binary variables, a, b, c, d, and e, then expression (1) says we
will need to cover 23 * C(5, 3) = 8*10 = 80 configurations. For 3-way combinatorial
testing, we will need to take all 3-variable combinations, of which there are 10:

 abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde

Each of these will need to be instantiated with all 8 possible configurations of three binary
variables:

 000, 001, 010, 011, 100, 101, 110, 111

The test [0 1 0 0 1] covers the following C(5, 3) = 10 configurations:

 abc abd abe acd ace ade bcd bce bde cde
 010 000 011 001 001 001 100 101 101 001

Orthogonal Arrays

Many software testing problems can be solved with an orthogonal array, a structure
that has been used for combinatorial testing in fields other than software for decades. An

Practical Combinatorial Testing

 61

orthogonal array,),,;(vktNOAλ is an N x k array. In every N x t subarray, each t-tuple

occurs exactly λ times. We refer to t as the strength of the coverage of interactions, k as the
number of parameters or components (degree), and v as the number of possible values for
each parameter or component (order).

Example. Suppose we have a system with three on-off switches, controlled by an
embedded processor. The following table tests all pairs of switch settings exactly once
each. Thus t = 2, λ = 1, v = 2. Note that there are vt = 22 possible combinations of values
for each pair: 00, 01, 10, 11. There are C(3,2) = 3 ways to select switch pairs: (1,2), (1,3),
and (2,3), and each test covers three pairs, so the four tests cover a total of 12 combinations
which implies that each combination is covered exactly once. As one might suspect, it can
be very challenging to fit all combinations to be covered into a set of tests exactly the same
number of times.

Test Sw 1 Sw 2 Sw 3
1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

Covering Arrays

An alternative to an orthogonal array is a set called a covering array, which includes
all t-way combinations of parameter values, for the desired strength t. A covering array,

),,;(vktNCAλ , is an N x k array. In every N x t subarray, each t-tuple occurs at least λ times.
Note this distinction between covering arrays and orthogonal arrays discussed in the
previous section. The covering array relaxes the restriction that each combination is
covered exactly the same number of times. Thus covering arrays may result in some test
duplication, but they offer the advantage that they can be computed for much larger
problems than is possible for orthogonal arrays. Software described elsewhere in this book
can efficiently generate covering arrays up to strength t = 6, for a large number of
variables.

The problems discussed in this publication deal only with the case when λ = 1, (i.e.
that every t-tuple must be covered at least once). In software testing, each row of the
covering array represents a test, with one column for each parameter that is varied in
testing. Collectively, the rows of the array include every t-way combination of parameter
values at least once. For example, Figure 1 shows a covering array that includes all 3-way
combinations of binary values for 10 parameters. Each column gives the values for a
particular parameter. It can be seen that any three columns in any order contain all eight
possible combinations of the parameter values. Collectively, this set of tests will exercise
all 3-way combinations of input values in only 13 tests, as compared with 1,024 for
exhaustive coverage.

Practical Combinatorial Testing
__

 62

Figure 1. 3-way covering array for 10 parameters with 2 values each.

Number of Tests Required

The challenge in computing covering arrays is to find the smallest possible array that
covers all configurations of t variables. If every new test generated covered all previously
uncovered combinations, then the number of tests needed would be

vt

t

n = vt

t

n

Since this is not generally possible, the covering array will be significantly larger

than vt, but still a reasonable number for testing. It can be shown that the number of tests in
a t-way covering array will be proportional to

 vt log n (2)

for n variables with v values each.

It’s worth considering the components of this expression to gain a better

understanding of what will be required to do combinatorial testing. First, note that the
number of tests grows exponentially with the interaction strength t. The number of tests
required for t+1-way testing will be in the neighborhood of v times the number required for
t-way testing. The table below shows how vt, grows for values of v and t. Although the
number of tests required for high-strength combinatorial testing can be very large, with
advanced software and cluster processors it is not out of reach.

Practical Combinatorial Testing

 63

v↓ t→ 2 3 4 5 6
2 4 8 16 32 64
4 16 64 256 1024 4096
6 36 216 1296 7776 46656

 Table 1. Growth of vt

Despite the possibly discouraging numbers in the table above, there is some good news.
Note that formula (2) grows only logarithmically with the number of variables, n. This is
fortunate for software testing. Early applications of combinatorial methods were typically
involved with small numbers of variables, such as a few different types of crops or
fertilizers, but for software testing, we must deal with tens, or in some cases hundreds of
variables.

Regular Expressions

Regular expressions are formal descriptions of strings of symbols, which may represent
text, events, characters, or other objects. They are developed within automata theory and
formal languages, where it is shown that there are direct mappings between expressions
and automata to process them, and are encountered in many areas within computer science.
In combinatorial testing they may be encountered in sequence covering or in processing
test input or output. Implementations vary, but standard syntax is explained below.

Expression Operators

Basic elements of regular expressions include:

| “or” alternation. Ex: ab|ac matches “ab” or “ac”
? 0 or 1 of the preceding element. Ex: ab?c matches “ac” or “abc”
* 0 or more of the preceding element. Ex: ab* matches “a”, “ab”,

“abb”, “abbb” etc. + 1 or more of the preceding element. Ex: ab+
matches “ab”, “abb”, “abbb” etc.

() grouping. Ex: (abc|abcd) matches “abc” or “abcd”
. matches any single character. Ex: a.c matches “abc”, “axc”, “a@c” etc.
[] matches any single character within brackets. Ex: [abc] matches “a”

or “b” or “c”.
A range may also be specified. Ex: [a-z] matches any single lower
case character.

 (This option depends on the character set supported.)
[^] matches any single character that is not contained in the brackets.
 Ex: [^ab] matches any character except “a” or “b”
^ matches start position, i.e., before the first character
$ matches end position, i.e., after the last character

Practical Combinatorial Testing
__

 64

Combining Operators

The operators above can be combined with symbols to create arbitrarily complex
expressions. Examples include:

.*a.*b.*c.* “a” followed by “b” followed by “c” with zero or more
symbols prior to “a”, following “c”, or interspersed with the three
symbols

a|b* null or “a” or zero or more occurrences of “b”
a+ equivalent to aa*

Many regular expression utilities such as egrep support a broader range of operators and
features. Readers should consult documentation for grep, egrep, or other regular
expression processors for detailed coverage of the options available on particular tools.

Practical Combinatorial Testing

 65

Appendix B - EMPIRICAL DATA ON SOFTWARE FAILURES

One of the most important questions in software testing is "how much is enough"?
 For combinatorial testing, this question includes determining the appropriate level of
interaction that should be tested. That is, if some failure is triggered only by an unusual
combination of more than two values, how many testing combinations are enough to detect
all errors? What degree of interaction occurs in real system failures? This section
summarizes what is known about these questions based on research by NIST and others [4,
7, 34, 35, 36, 65].

Table 1 below summarizes what we know from empirical studies of a variety of
application domains, showing the percentage of failures that are triggered by the interaction
of one to six variables. For example, 66% of the medical devices were triggered by a
single variable value, and 97% were triggered by either one or two variables interacting.
 Although certainly not conclusive, the available data suggest that the number of
interactions involved in system failures is relatively low, with a maximum from 4 to 6 in
the six studies cited below. (Note: TCAS study used seeded errors, all others are
"naturally occurring", * = not reported.)

Vars Medical
Devices Browser Server NASA

GSFC
Network
Security TCAS

1 66 29 42 68 17 *

2 97 76 70 93 62 53

3 99 95 89 98 87 74

4 100 97 96 100 98 89

5 99 96 100 100

6 100 100
Table 1. Number of variables involved in triggering software failures

System System type Release stage Size (LOC)
Medical
Devices

Embedded Fielded
products

103 – 104
(varies)

Browser Web browser Development/
beta release

approx. 2 x 105

Server HTTP server Development/
beta release

approx. 105

NASA
database

Distributed
scientific
database

Development,
integration test

approx. 105

Network
security

Network
protocols

Fielded
products

103 – 105
(varies)

Table 2. System characteristics

Practical Combinatorial Testing
__

 66

Figure 1. Cumulative percentage of failures triggered by t-way interactions.

We have also investigated a particular class of vulnerabilities, denial-of-serivce,
using reports from the National Vulnerability Database (NVD), a publicly available
repository of data on all publicly reported software security vulnerabilities. NVD can
be queried for fine-granularity reports on vulnerabilities. Data from 3,045 denial-of-
service vulnerabilities have the distribution shown in Table 3. We present this data
separately from that above because it covers only one particular kind of failure, rather
than data on any failures occurring in a particular program as shown in Figure 1.

Vars
NVD

cumulative
%

1 93%

2 99%

3 100%

4 100%

5 100%

6 100%

Table 3. Cumulative percentage of denial-of-service
vulnerabilities triggered by t-way interactions.

Why do the failure detection curves look this way? That is, why does the error rate

tail off so rapidly with more variables interacting? One possibility is that there are simply
few complex interactions in branching points in software. If few branches involve 4-way,
5-way, or 6-way interactions among variables, then this degree of interaction could be rare
for failures as well. The table below (Table 4 and Fig. 2) gives the number and percentage
of branches in avionics code triggered by one to 19 variables. This distribution was

Practical Combinatorial Testing

 67

developed by analyzing data in a report on the use of MCDC testing in avionics software
[16], which contains 20,256 logic expressions in five different airborne systems in two
different airplane models. The table below includes all 7,685 expressions from if and while
statements; expressions from assignment (:=) statements were excluded.

Table 4. Number of variables in avionics software b ranches

Vars Count Pct Cumulative

1 5691 74.1% 74.1%

2 1509 19.6% 93.7%

3 344 4.5% 98.2%

4 91 1.2% 99.3%

5 23 0.3% 99.6%

6 8 0.1% 99.8%

7 6 0.1% 99.8%

8 8 0.1% 99.9%

9 3 0.0% 100.0%

15 1 0.0% 100.0%

19 1 0.0% 100.0%

Figure 2. Cumulative percentage of branches containing n variables.

As shown in Fig. 2, most branching statement expressions are simple, with over 70%
containing only a single variable. Superimposing the curve from Fig. 2 on Fig. 1, we see
(Fig. 3) that most failures are triggered by more complex interactions among variables. It
is interesting that the NASA distributed database failures, from development-phase
software bug reports, have a distribution similar to expressions in branching statements.
 This distribution may be because this was development-phase rather than fielded software
like all other types reported in Fig. 1. As failures are removed, the remaining failures may
be harder to find because they require the interaction of more variables. Thus testing and
use may push the curve down and to the right.

Practical Combinatorial Testing
__

 68

Figure 3. Branch distribution (green) superimposed on Fig. 1.

Practical Combinatorial Testing

 69

Appendix C - TOOLS FOR COMBINATORIAL TESTING

A variety of software tools are available to assist with combinatorial testing

projects. Here we summarize those available from the NIST ACTS project. The
ACTS covering array generator is generally faster and produces smaller test arrays
than others, based on comparisons we have done in 2009. The other tools, to the best
of our knowledge, have functions that are not available elsewhere.

• ACTS covering array generator – produces compact arrays that will cover 2-way

through 6-way combinations. It also supports constraints that can make some
values dependent on others, and mixed level covering arrays which offer different
strength coverage for subsets of the parameters (e.g., 2-way coverage for one
subset but 4-way for another subset of parameters). Output can be exported in a
variety of formats, including human-readable, numeric, and spreadsheet. Either
“don’t care” or randomized output can be specified for tests that include
combinations already fully covered by previous tests.

• Coverage measurement tool – produces a comprehensive set of data on the

combinatorial coverage of an existing set of tests, as explained in Chapter 6.
Output can be generated in spreadsheet format to allow easy processing and
graphing.

• Sequence covering array generator – produces sequence covering arrays as

defined in Chapter 5. It includes an option for constraints in the form of
prohibited sequences.

To obtain any of these, see the ACTS web site at csrc.nist.gov/acts.

Practical Combinatorial Testing
__

 70

Appendix D - REFERENCES

1. P. Ammann, P.E. Black, Abstracting Formal Specifications to Generate Software

Tests via Model Checking, Proc. 18th Digital Avionics Systems Conference, Oct.
1999, IEEE, vol. 2. pp. 10.A.6.1-10

2. P. Ammann, J. Offutt, Introduction to Software Testing, Cambridge University

Press, New York, 2008.

3. J. Bach, P. Shroeder, Pairwise Testing - A Best Practice That Isn't. Proceedings of

22nd Pacific Northwest Software Quality Conference, 2004, pp. 180-196

4. L. Baresi, M. Young, Test Oracles, Dept. of Computer and Information Science,
Univ. of Oregon, 2001. http://www.cs.uoregon.edu/michal/pubs/oracles.html

5. B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, 2nd

edition, 1990.

6. K. Z. Bell and Mladen A. Vouk. On effectiveness of pairwise methodology for
testing network-centric software. Proceedings of the ITI Third IEEE International
Conference on Information & Communications Technology, pages 221–235, Cairo,
Egypt, December 2005.

7. K.Z. Bell, Optimizing Effectiveness and Efficiency of Software Testing: a Hybrid

Approach, PhD Dissertation, North Carolina State University, 2006.

8. P. E. Black, V. Okun, Y. Yesha, "Testing with Model Checkers: Insuring Fault

Visibility", WSEAS Trans. Sys., 2 (1): 77-82, Jan. 2003.

9. P. E. Black, V. Okun, Y. Yesha, "Mutation Operators for Specfications",
Automated Software Engineering, 2000

10. B.W. Boehm, Software Engineering Economics, Prentice Hall, 1981.

11. R. Bryce, C.J. Colbourn. The Density Algorithm for Pairwise Interaction Testing,

Journal of Software Testing, Verification and Reliability, August 2007

12. R. Bryce, A. Rajan, M.P.E. Heimdahl, Interaction Testing in Model Based

Development: Effect on Model Coverage, IEEE, 13th Asia Pacific Software
Engineering Conference (APSEC'06) pp. 259-268.

13. R. Bryce, Y. Lei, D.R. Kuhn, R. Kacker, "Combinatorial Testing", Chap. 14,

Handbook of Research on Software Engineering and Productivity Technologies:
Implications of Globalization, Ramachandran, ed. , IGI Global, 2009.

Practical Combinatorial Testing

 71

14. K. Burr and W. Young Combinatorial Test Techniques: Table-Based Automation,
Test Generation, and Test Coverage, International Conference on Software Testing,
Analysis, and Review (STAR), San Diego, CA, October, 1998.

15. K. Burroughs, A. Jain, and R. L. Erickson. Improved quality of protocol testing

through techniques of experimental design. In Proceedings of the IEEE
International Conference on Communications (Supercomm/ICC'94), May 1-5, New
Orleans, Louisiana, USA. IEEE, May 1994, pp. 745-752

16. J. J. Chilenski, An Investigation of Three Forms of the Modified Condition

Decision Coverage (MCDC) Criterion, Report DOT/FAA/AR-01/18, April 2001,
214 pp.

17. A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. NuSMV: a new symbolic

model verifier. In N. Halbwachs and D. Peled, editors. Proceeding of International
Conference on Computer-Aided Verification (CAV'99). In Lecture Notes in
Computer Science, no. 1633, pp. 495-499, Trento, Italy, July 1999. Springer Verlag.

18. E. M. Clarke, K. L. McMillan, S. Campos, and V. Hartonas-Garmhausen.

Symbolic model checking. In Rajeev Alur and Thomas A. Henzinger, editors,
Proceedings of the Eighth International Conference on Computer Aided
Verification CAV, volume 1102 of Lecture Notes in Computer Science, pages 419-
422, New Brunswick, NJ, USA, July/August 1996. Springer Verlag.

19. M.B. Cohen, J. Snyder, G. Rothermel. Testing Across Configurations: Implications

for Combinatorial Testing, Workshop on Advances in Model-based Software
Testing, Raleigh, Nov. 2006, pp. 1-9

20. D. M. Cohen, S. R. Dalal, J. Parelius, G. C. Patton The Combinatorial Design

Approach to Automatic Test Generation, IEEE Software, Vol. 13, No. 5, pp. 83-87,
September 1996

21. L. Copeland, A Practitioner’s Guide to Software Test Design, Artech House

Publishers, Boston, 2004.

22. Apilli, B. S., L. Richardson, C. Alexander, Fault-based combinatorial testing of web

services. In Proc. 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications (Orlando, October 25 - 29,
2009)

23. Dalal, S.R., C.L. Mallows, Factor-covering Designs for Testing Software,
Technometrics, v. 40, 1998, pp. 234-243.

Practical Combinatorial Testing
__

 72

24. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, A. Iannino. Applying
design of experiments to software testing, Proceedings of the Intl. Conf. on
Software Engineering, (ICSE ’97), 1997, pp. 205-215, New York

25. L. du Bousquet, Y. Ledru, O. Maury, C. Oriat, J.-L. Lanet, A case study in JML-

based software validation. Proceedings of 19th Int. IEEE Conf. on Automated
Sofware Engineering, pp. 294-297, Linz, Sep. 2004

26. M. Grindal, J. Offutt, S.F. Andler, Combination Testing Strategies: a Survey,

Software Testing, Verification, and Reliability, v. 15, 2005, pp. 167-199.

27. C.A.R. Hoare, “Assertions, a Personal Perspective”, IEEE Annals of the History of

Computing, vol. 25, no. 2, pp. 14-25, 2003.

28. R. Kramer, “iContract – The Java Design by Contract Tool”. In Proceedings of

TOOLS26: Technology of Object-Oriented Languages and Systems, pp. 295-307,
IEEE, 1998.

29. V. Hu, D.R. Kuhn, T. Xie, "Property Verification for Generic Access Control

Models", IEEE/IFIP International Symposium on Trust, Security, and Privacy for
Pervasive Applications, Shanghai, China, Dec. 17-20, 2008.

30. Institute of Electrical and Electronics Engineers, IEEE Standard Glossary of

Software Engineering Terminology, ANSI/IEEE Std. 729-1983.

31. D.R. Kuhn, "Fault Classes and Error Detection Capability of Specification Based

Testing," ACM Transactions on Software Engineering and Methodology, Vol. 8,
No. 4 (October,1999).

32. R. Kuhn, R. Kacker, Y. Lei, J. Hunter, "Combinatorial Software Testing", IEEE

Computer, vol. 42, no. 8 (August 2009).

33. D.R. Kuhn, R. Kacker, Y. Lei, "Automated Combinatorial Test Methods: Beyond

Pairwise Testing", Crosstalk, Journal of Defense Software Engineering, vol. 21, no.
6, June 2008

34. D.R. Kuhn and V. Okun, “Pseudo-exhaustive Testing for Software,” Proceedings of

30th NASA/IEEE Software Engineering Workshop, pp. 153-158, 2006

35. D.R. Kuhn, M.J. Reilly, An Investigation of the Applicability of Design of
Experiments to Software Testing, 27th NASA/IEEE Software Engineering
Workshop, NASA Goddard Space Flight Center, 4-6 December, 2002 .

36. D.R. Kuhn, D.R. Wallace, and A. Gallo, “Software Fault Interactions and

Implications for Software Testing,” IEEE Transactions on Software Engineering,
30(6): 418-421, 2004

Practical Combinatorial Testing

 73

37. D.R. Kuhn, R. Kacker, Y.Lei, "Random vs. Combinatorial Methods for Discrete

Event Simulation of a Grid Computer Network", Proceedings, Mod Sim World
2009, Oct. 14-17 2009, Virginia Beach, pp. 83-88, NASA CP-2010-216205,
National Aeronautics and Space Administration.

38. D.R. Kuhn, R. Kacker, Y. Lei, "Combinatorial and Random Testing Effectiveness

for a Grid Computer Simulator" NIST Tech. Rpt. 24 Oct 2008.

39. D.R. Kuhn, J.M. Higdon, Testing Event Sequences,
http://csrc.nist.gov/groups/SNS/acts/sequence_cov_arrays.html Oct., 2009.

40. D.R. Kuhn, J.M. Higdon, J.F. Lawrence, R. Kacker, Y. Lei, "Combinatorial

Methods for Event Sequence Testing", (to appear).

41. G. Kundrajavets, N. Nagappan, T. Ball, Assessing the Relationship between

Software Assertions and Faults: an Empirical Investigation, Proceedings of 17th
International Symposium on Software Reliability Engineering, IEEE, pp. 204-212,
Raleigh, 2006.

42. G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed design. In H.

Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems. Kluwer, 1999

43. Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, “IPOG/IPOG-D: Efficient

Test Generation for Multi-Way Combinatorial Testing”, Software Testing,
Verification, and Reliability.

44. D.C. Luckham, F.W. von Henke. “Overview of Anna, a Specification Language

for Ada”, IEEE Software, vol. 2, no. 2, pp. 9-22, March 1985.

45. M. Lyu, ed. Software Reliability Engineering, McGraw Hill, 1996.

46. P.J. Maker, GNU Nana – User’s Guide (version 2.4). Technical report, School of

Information Technology – Northern Territory Univ., July 1998.

47. B.A. Malloy, J.M. Voas, “Programming with Assertions – a Prospectus”, IEEE IT

Professional, vol. 6, no. 5, pp. 53-59, Sept./Oct. 2004.

48. B. Marick, The Craft of Software Testing, Simon & Schuster, 1995.

49. A.P. Mathur, Foundations of Software Testing, Addison-Wesley, New York, 2008.

50. J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, “A Method for Analyzing

System State-space Coverage within a t-Wise Testing Framework”, IEEE
International Systems Conference 2010, Apr. 4-11, 2010, San Diego.

Practical Combinatorial Testing
__

 74

51. M. Memon and Q. Xie. Studying the fault-detection effectiveness of GUI test cases

for rapidly evolving software. IEEE Trans. Softw. Eng., 31(10):884–896, 2005.

52. B. Meyer, Object-Oriented Software Construction, Second Edition, Prentice Hall,

1997, ISBN 0-13-629155-4

53. G. Myers, The Art of Software Testing, John Wiley and Sons, New York, 1979.

54. V. Okun, P. E. Black, “Issues in Software Testing with Model Checkers”,

Proceedings of the International Conference on Dependable Systems and Networks
(DSN-2003), June 2003

55. V. Okun, "Specification Mutation for Test Generation and Analysis", PhD

Dissertation, U of Maryland Baltimore Co., 2004

56. Alexander Pretschner, Tejeddine Mouelhi, Yves Le Traon. Model Based Tests for

Access Control Policies, 2008 International Conference on Software Testing,
Verification, and Validation pp. 338-347

57. D.S. Rosenblum. A Practical Approach to Programming with Assertions, IEEE

Trans. on Software Eng., vol. 21, no. 11, pp. 777-793, Jan. 1995.

58. Patrick J. Schroeder, Pankaj Bolaki, and Vijayram Gopu. Comparing the fault
detection effectiveness of n-way and random test suites. In Proceedings of the IEEE
International Symposium on Empirical Software Engineering, pages 49–59, 2004.

59. M. Sutton, A. Greene, P. Amini, Fuzzing: Brute Force Vulnerability Discovery,

Addison-Wesley, 2007

60. J.M. Voas, K.W. Miller, “Putting Assertions in their Place”, Proceedings of

International Symposium on Software Reliability Engineering, IEEE, pp. 152-157,
1994.

61. J. Voas, Schatz, M., Schmid, M., "A Testability-based Assertion Placement Tool

for Object-Oriented Software," National Institute for Standards and Technology
NIST GCR 98-735, 1998.

62. W. Wang Sampath, S. Yu Lei Kacker, R., An Interaction-Based Test Sequence

Generation Approach for Testing Web Applications, High Assurance Systems
Engineering Symposium, 2008. HASE 2008. Nanjing, 3-5 Dec. 2008 pp. 209-218.

63. X. Yuan, M.B. Cohen, A. Memon, “Covering Array Sampling of Input Event

Sequences for Automated GUI Testing”, November 2007 ASE '07: Proceedings of
the 22nd IEEE/ACM Intl. Conf. Automated Software Engineering, pp. 405-408.

Practical Combinatorial Testing

 75

64. X. Yuan and A. M. Memon. Using GUI run-time state as feedback to generate test
cases. In ICSE’07, Proceedings of the 29th International Conference on Software
Engineering, pages 396–405, Minneapolis, MN, USA, May 23–25, 2007.

65. D.R. Wallace, D.R. Kuhn, Failure Modes in Medical Device Software: an Analysis

of 15 Years of Recall Data, International Journal of Reliability, Quality, and Safety
Engineering, Vol. 8, No. 4, 2001.

66. A.W. Williams, R.L. Probert. A practical strategy for testing pair-wise coverage of

network interfaces The Seventh International Symposium on Software Reliability
Engineering (ISSRE '96) p. 246

